1887

Abstract

accumulates fructose by an active process sensitive to azide, 2,4-dinitrophenol and carbonyl cyanide -chlorophenylhydrazone. The fructose is not phosphorylated during transport. Sorbose and glucose interfere with fructose uptake. Inside the cell fructose is metabolized via fructose 6-phosphate; there is no evidence for an alternative metabolic route via sorbitol to glucose or via sorbitol 6-phosphate to fructose 6-phosphate. Tn5-induced mutants lacking fructokinase failed to grow on fructose, mannitol or sorbitol and grew slowly on sucrose; growth was normal on all other single carbon sources tested. Growth of these mutants on a range of carbon sources was retarded by added fructose. Revertants which had regained the capacity to utilize fructose all had an unstable fructokinase which could be partially stabilized by fructose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-2-231
1984-02-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/2/mic-130-2-231.html?itemId=/content/journal/micro/10.1099/00221287-130-2-231&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L. 1975; Catabolism of d-fructose and -ribose by Pseudomonas aeruginosa. I. Physiological studies and mutant analysis. Archives of Microbiology 105:225–240
    [Google Scholar]
  2. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. . Journal of General Microbiology 84:188–198
    [Google Scholar]
  3. Beringer J. E., Beynon J. L., Buchanan-Wollas-Ton A. V., Johnston A. W. B. 1978; Transfer of the drug-resistance transposon Tn5 to Rhizobium. . Nature; London: 276633–634
    [Google Scholar]
  4. Brown C. M., Dilworth M. J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. Journal of General Microbiology 86:39–48
    [Google Scholar]
  5. Dilworth M. J., Mckay I. A., Franklin M., Glenn A. R. 1983; Catabolite effects on enzyme induction and substrate utilization in Rhizobium leguminosarum. . Journal of General Microbiology 129:359–366
    [Google Scholar]
  6. Duncan M. 1981; Properties of Tn-5 induced carbohydrate mutants of Rhizobium meliloti. . Journal of General Microbiology 122:61–67
    [Google Scholar]
  7. Glenn A. R., Dilworth M. J. 1981a; Oxidation of substrates by isolated bacteroids and free-living cells of Rhizobium leguminosarum. . Journal of General Microbiology 126:243–247
    [Google Scholar]
  8. Glenn A. R., Dilworth M. J. 1981b; The uptake and hydrolysis of disaccharides by fast- and slow- growing species of Rhizobium. . Archives of Microbiology 129:233–239
    [Google Scholar]
  9. Glenn A. R., Poole P. S., Hudman J. F. 1980; Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. . Journal of General Microbiology 119:267–271
    [Google Scholar]
  10. Glenn A. R., Mckay I. A., Arwas R., Dilworth M. J. 1984; Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. . Journal of General Microbiology 130:239–245
    [Google Scholar]
  11. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 58:210–236
    [Google Scholar]
  12. Horwitz S. B. 1966; Mannitol 1-phosphate dehydrogenase and sorbitol 6-phosphate dehydrogenase from Aerobacter aerogenes. . Methods in Enzymology 9:150–155
    [Google Scholar]
  13. Hudman J. F., Glenn A. R. 1980; Glucose uptake by free-living and bacteroid forms of Rhizobium leguminosarum. . Archives of Microbiology 128:72–77
    [Google Scholar]
  14. Johnston A. W. B., Beringer J. E. 1975; Identification of the Rhizobium strains in pea root nodules using genetic markers. Journal of General Microbiology 87:343–350
    [Google Scholar]
  15. Lynch W. H., Mcleod J., Franklin M. 1975; Effect of temperature on the activity and synthesis of glucose catabolizing enzymes in Pseudomonas fluorescens. . Canadian Journal of Microbiology 21:1560–1572
    [Google Scholar]
  16. Martinez-De Drets G., Arias A. 1970; Metabolism of some polyols by Rhizobium meliloti. . Journal of Bacteriology 103:97–103
    [Google Scholar]
  17. Ronson C. W., Primrose S. B. 1979; Carbohydrate metabolism in Rhizobium trifolii: identification and symbiotic properties of mutants. Journal of General Microbiology 112:77–88
    [Google Scholar]
  18. Sawyer M. H., Baumann P., Baumann L., Berman S. M., Canovas J. L., Berman R. H. 1977; Pathways of -fructose metabolism in species of Pseudomonas. . Archives of Microbiology 112:49–55
    [Google Scholar]
  19. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium AND Escherichia coli. . Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  20. Streeter J. G. 1980; Carbohydrates in soybean nodules. II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiology 66:471–476
    [Google Scholar]
  21. Van Dijken J. P., Quayle J. R. 1977; Fructose metabolism in four Pseudomonas species. Archives of Microbiology 114:281–286
    [Google Scholar]
  22. Velle W. 1975; Aldose reductase from seminal vesicle and placenta of ruminants. Methods in Enzymology 41:165–170
    [Google Scholar]
  23. Wolff J. B. 1955; Sorbitol dehydrogenase from liver. Methods in Enzymology 1:348–350
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-2-231
Loading
/content/journal/micro/10.1099/00221287-130-2-231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error