1887

Abstract

Pk 233 produced extracellular glutathione during growth in filamentous form caused by adding ethanol (⩾ 2·5%, v/v). The intracellular concentration of glutathione also was greater in cultures with added ethanol. myo-Inositol added at a physiological concentration (5 µg ml) prevented the ethanol-induced production of extracellular glutathione as well as the morphological change. In batch culture, production of extracellular glutathione was optimal at an ethanol concentration of 5%, and reached a maximum concentration of 42 mg ml after 96 h cultivation, before decreasing gradually.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-12-3275
1984-12-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/12/mic-130-12-3275.html?itemId=/content/journal/micro/10.1099/00221287-130-12-3275&mimeType=html&fmt=ahah

References

  1. Becker G.W., Lester R.L. 1977; Changes in phospholipids of Saccharomyces cerevisiae associated with inositol-less death. Journal of Biological Chemistry 252:8684–8691
    [Google Scholar]
  2. Gushima H., Miya T., Murata K., Kimura A. 1983a; Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. Journal of Applied Biochemistry 5:43–52
    [Google Scholar]
  3. Gushima H., Miya T., Murata K., Kimura A. 1983b; Purification and characterization of glutathione synthetase from Escherichia coli B. Journal of Applied Biochemistry 5:210–218
    [Google Scholar]
  4. Gushima H., Miya T., Murata K., Kimura A. 1983c; γ-glutamylcysteine production by Escherichia coli B cells dosed with the γ-glutamylcysteinesynthetase gene. Agricultural and Biological Chemistry 47:1927–1928
    [Google Scholar]
  5. Hanson B., Lester R.L. 1980; Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. Journal of Bacteriology 142:79–89
    [Google Scholar]
  6. Henry S.A., Atkinson K., Kolat A., Culbertson N. 1977; Growth and metabolism of inositol- starved cells of Saccharomyces cerevisiae. Journal of Bacteriology 130:472–484
    [Google Scholar]
  7. Kumagai H., Nakayama R., Tochikura T. 1982a; γ-glutamylcysteinesynthetase from Proteus mirabi-lis. Agricultural and Biological Chemistry 46:1301–1309
    [Google Scholar]
  8. Kumagai H., Nakayama R., Tochikura T. 1982b; Allosteric properties of γ-glutamylcysteinesynthetase from Proteus mirabilis. Biochemistry International 5:481–486
    [Google Scholar]
  9. Murata K., Kimura A. 1982; Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coliB. Applied Environmental Microbiology 44:1444–1448
    [Google Scholar]
  10. Murata K., Tani K., Kato J., Chibata I. 1979; Application of immobilized ATP in the production of glutathione by a multienzyme system. Journal of Applied Biochemistry 1:283–290
    [Google Scholar]
  11. Murata K., Tani K., Kato J., Chibata I. 1980a; Glutathione production coupled with an ATP regeneration system. European Journal of Applied Microbiology and Biotechnology 10:11–21
    [Google Scholar]
  12. Murata K., Tani K., Kato J., Chibata I. 1980b; Continuous production of glutathione using immobilized microbial cells containing ATP generating system. Biochemie 62:347–352
    [Google Scholar]
  13. Murata K., Tani K., Kato J., Chibata I. 1980c; Excretion of glutathione by methylglyoxal-resistant Escherichia coli. Journal of General Microbiology 120:545–547
    [Google Scholar]
  14. Murata K., Tani K., Kato J., Chibata I. 1981a; Glutathione production by immobilized Saccharomyces cerevisiae cells using an ATP regeneration system. European Journal of Applied Microbiology and Biotechnology 11:72–77
    [Google Scholar]
  15. Murata K., Tani K., Kato J., Chibata I. 1981b; Glycolytic pathway as an ATP generation system and its application to the production of glutathione and NADP. Enzyme and Microbial Technology 3:233–242
    [Google Scholar]
  16. Murata K., Miya T., Gushima H., Kimura A. 1983; Cloning and amplification of a gene for glutathione synthetase in Escherichia coli B. Agricultural and Biological Chemistry 47:1381–1383
    [Google Scholar]
  17. Nakayama R., Kumagai H., Maruyama T., Tochi-Kura T., Ueno T., Fukami H. 1981; Synthesis of γ-glutamylcysteinesynthetase from Proteus mirabilis. Agricultural and Biological Chemistry 45:2839–2845
    [Google Scholar]
  18. Nakayama R., Kumagai H., Tochikura T. 1984; Leakage of glutathione from bacterial cells caused by inhibition of γ-glutamyltranspeptidase. Applied and Environmental Microbiology 47:653–657
    [Google Scholar]
  19. Owens C.W.I., Belcher R.V. 1965; A colorimetric micro-method for the determination of glutathione. Biochemical Journal 94:705–711
    [Google Scholar]
  20. Tani Y., Yamada Y.., Kamihara T. 1979; Morphological change in Candida tropicalisPk 233 caused by ethanol and its prevention by myoinositol. Biochemical and Biophysical Research Communication 91:351–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-12-3275
Loading
/content/journal/micro/10.1099/00221287-130-12-3275
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error