1887

Abstract

A plasmid, pCL34, capable of autonomous replication in and has been constructed which carries the promoter and structural gene () for amidase, but not the regulator gene (). Plasmid pCL34 has been mobilized from to using the broad host range plasmid RP4. Complementation studies were performed in strains carrying various amidase mutations. Measurements of amidase activity in the recipients under inducing, non-inducing and repressing conditions showed -complementation by the chromosomally located regulator gene product. These results confirmed the positive control model for amidase gene expression. Levels of amidase expression seen during these studies were approximately threefold higher than in the parental, amidase-positive strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-12-3101
1984-12-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/12/mic-130-12-3101.html?itemId=/content/journal/micro/10.1099/00221287-130-12-3101&mimeType=html&fmt=ahah

References

  1. Bagdasarian M., Timmis K. N. 1982; Host: vector systems for gene cloning in Pseudomonas. Current Topics in Microbiology and Immunology 96:47–67
    [Google Scholar]
  2. Bagdasarian M., Lurz R., Ruckert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors, II. Broad host range, high copy number, RSF1010 derived vectors and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247
    [Google Scholar]
  3. Bazaral M., Helinski D. R. 1968; Circular DNA forms of colicinogenic factors El, E2 and E3 from Escherichia coli. Journal of Molecular Biology 36:185–194
    [Google Scholar]
  4. Betz J. L., Clarke P. H. 1972; Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. Journal of General Microbiology 73:161–174
    [Google Scholar]
  5. Betz J. L., Brown J. E., Clarke P. H., Day M. 1974; Genetic analysis of amidase mutants of Pseudomonas aeruginosa. Genetical Research 23:335–359
    [Google Scholar]
  6. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  7. Bloom F. R., Mcfall E., Young M. C., Carothers A. M. 1975; Positive control in the d-serine deaminase system of Escherichia coli K12. Journal of Bacteriology 121:1092–1101
    [Google Scholar]
  8. Bolivar F., Rodriguez R. L., Green P. J., Betlach M. V., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterisation of new cloning vehicles, II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  9. Brammar W. J., Clarke P. H. 1964; Induction and repression of Pseudomonas aeruginosa amidase. Journal of General Microbiology 37:307–319
    [Google Scholar]
  10. Brammar W. J., Clarke P. H., Skinner A. J. 1967; Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. Journal of General Microbiology 47:87–102
    [Google Scholar]
  11. Carothers A. M., Heincz M. C., Mcfall E. 1980; Position effect on expression of dsd genes cloned onto multicopy plasmids. Journal of Bacteriology 142:185–190
    [Google Scholar]
  12. Clarke L., Carbon J. 1978; Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of argininosuccinate lysase (arg H) mutations. Journal of Molecular Biology 120:517–532
    [Google Scholar]
  13. Clarke P. H. 1972; Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species. Journal of General Microbiology 71:241–257
    [Google Scholar]
  14. Clarke P. H., Laverack P. D. 1983; Expression of the argF gene of Pseudomonas aeruginosaIn Pseudomonas aeruginosa, Pseudomonas puiida, and Escherichia coli. Journal of Bacteriology 154:508–512
    [Google Scholar]
  15. Clarke P. H., Drew R. E., Turberville C., Brammar W. J., Ambler R. P., Auffret A. D. 1981; Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N terminal sequence of amidase. Bioscience Reports 1:299–307
    [Google Scholar]
  16. Day M. J. 1975 Genetic studies with Pseudomonas aeruginosa strains PhD thesis University of London:
    [Google Scholar]
  17. Drew R. E., Clarke P. H., Brammar W. J. 1980; The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa. Molecular and General Genetics 177:311–320
    [Google Scholar]
  18. Dunn N. W., Holloway B. W. 1971; Pleiotropy of p-fluorophenylalanine resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genetical Research 18:185–197
    [Google Scholar]
  19. Englesberg E., Irr J., Power J., Lee N. 1965; Positive control of enzyme synthesis by gene C in the L-arabinose system. Journal of Bacteriology 90:946–957
    [Google Scholar]
  20. Englesberg E., Squires C., Meronk F.Jr 1969; The l-arabinose operon in Escherichia coli B/r: a genetic demonstration of two functional states of the product of a regulator gene. Proceedings of the National Academy of Sciences of the United States of America 62:1100–1107
    [Google Scholar]
  21. Farin F., Clarke P. H. 1978; Positive regulation of amidase synthesis in Pseudomonas aeruginosa. Journal of Bacteriology 135:379–392
    [Google Scholar]
  22. Goodman H. M., Macdonald R. J. 1979; Cloning of hormone genes from a mixture of cDN A molecules. Methods in Enzymology 68:75–90
    [Google Scholar]
  23. Grinter N. J., Barth P. T. 1976; Characterization of SmSu plasmids by restriction endonuclease cleavage and compatibility testing. Journal of Bacteriology 128:394–400
    [Google Scholar]
  24. Haas D., Holloway B. W. 1976; R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Molecular and General Genetics 144:243–251
    [Google Scholar]
  25. Harayama S., Tsuda M., Iino T. 1980; High frequency mobilisation of the chromosome of Escherichia coli by a mutant of plasmid RP4 temperature sensitive for maintenance. Molecular and General Genetics 180:47–56
    [Google Scholar]
  26. Hedges R. W., Jacob A. E. 1977; In vivo translocation of genes of Pseudomonas aeruginosa onto a promiscuously transmissible plasmid. FEMS Microbiology Letters 2:15–19
    [Google Scholar]
  27. Hedges R. W., Jacob A. E., Crawford I. P. 1977; Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes. Nature; London: 267283–284
    [Google Scholar]
  28. Hennam J. F., Cunningham A. E., Sharpe G. S., Atherton K. T. 1982; Expression of eukaryotic coding sequences in Methylophilus methylotrophus. Nature; London: 29780–82
    [Google Scholar]
  29. Holloway B. W. 1978; Isolation and characterisation of an R’ plasmid in Pseudomonas aeruginosa. Journal of Bacteriology 133:1078–1082
    [Google Scholar]
  30. Jacob F., Monod J. 1961; Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3:318–356
    [Google Scholar]
  31. Kelly M., Clarke P. H. 1962; An inducible amidase produced by a strain of Pseudomonas aeruginosa. Journal of General Microbiology 27:305–3161
    [Google Scholar]
  32. Lennox E. S. 1966; Transduction of linked characters of the host of bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  33. Mandel M., Higa A. 1970; A calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  34. Meyer R., Boch G., Shapiro J. 1979; Transposition of DNA inserted into deletions of the Tn5 kanomycin resistance element. Molecular and General Genetics 171:7–13
    [Google Scholar]
  35. Morgan A. F. 1982; Isolation and characterisation of Pseudomonas aeruginosa R’ plasmids constructed by interspecific mating. Journal of Bacteriology 149:654–661
    [Google Scholar]
  36. Peacock A. C., Dingman C. W. 1969; Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry 6:1818–1827
    [Google Scholar]
  37. Rodriguez R. L., Tait R., Shine J., Boliva F., Heyneker H., Betlach M., Boyer H. 1977; Characterisation of tetracycline and ampicillin resistant plasmid cloning vehicles. In Molecular Cloning of Recombinant DNA pp. 73–84
    [Google Scholar]
  38. Rothstein S. J., Jorgensen R. A., Yin J. C. -P., Yong-DI Z., Johnston R. C., Reznikoff W. S. 1980; Genetic organization of Tn5. Cold Spring Harbor Symposia on Quantitative Biology 45:99–105
    [Google Scholar]
  39. Smyth P. F., Clarke P. H. 1975a; Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. Journal of General Microbiology 90:81–90
    [Google Scholar]
  40. Smyth P. F., Clarke P. H. 1975b; Catabolite repression of Pseudomonas aeruginosa amidase: isolation of promoter mutants. Journal of General Microbiology 90:91–99
    [Google Scholar]
  41. Willetts N., Crowther C. 1981; Mobilisation of the non-conjugative IncQ plasmid RSF 1010. Genetical Research 37:311–316
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-12-3101
Loading
/content/journal/micro/10.1099/00221287-130-12-3101
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error