1887

Abstract

An efficient system for cloning in is described which uses a newly constructed bacteriophage vector, πœ™105J9. The phage genome contains cloning sites for the enzymes Hl, l and l, and can accommodate inserts of passenger DNA of at least 4 kbp. Recombinant phages, which can both plaque and lysogenize normally, are recovered after direct transfection of protoplasts in the presence of polyethylene glycol. Several fully functional sporulation genes and one biosynthetic gene from have been isolated from genomic libraries that were constructed with the new vector. The system may provide an alternative to some of the cloning methods currently available that use as host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-10-2615
1984-10-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/10/mic-130-10-2615.html?itemId=/content/journal/micro/10.1099/00221287-130-10-2615&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  2. Banner C.D.B., Moran C.P.Jr Losick R. 1983; Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. Journal of Molecular Biology 168:351–365
    [Google Scholar]
  3. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Blattner F.R., Williams B.G., Blechl A.E., Deniston-Thompson K., Faber H.E., Furlong L.-A., Grunwald D.J., Kiefer D.O., Moore D.D., Schumm J.W., Sheldon E, Smithies O. 1977; Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161–169
    [Google Scholar]
  5. Boyer H.W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  6. Bugaichuk U.D., Deadman M., Errington J., Savva D. 1984; Restriction enzyme analysis of Bacillus subtilis bacteriophage ΙΈ105 DNA. Journalof General Microbiology 130:2165–2167
    [Google Scholar]
  7. Chang S., Cohen S.N. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Genetics 168:111–115
    [Google Scholar]
  8. Coote J. 1972; Sporulation in Bacillus subtilis.Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. Journal of General Microbiology 71:1–15
    [Google Scholar]
  9. Errington J., Mandelstam J. 1983; Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoil A, in Bacillus subtilis. Journal of General Microbiology 129:2091–2101
    [Google Scholar]
  10. Errington J., Mandelstam J. 1984; Genetic and phenotypic characterization of a cluster of mutations in the spoVA locus of Bacillus subtilis. Journal of General Microbiology 130:2115–2121
    [Google Scholar]
  11. Flock J.-I. 1977; Deletion mutants of temperate Bacillus subtilis bacteriophage ΙΈ105. Molecular and General Genetics 155:241–247
    [Google Scholar]
  12. Fort P., Piggot P.J. 1984; Nucleotide sequence of sporulation locus spolIA in Bacillus subtilis. Journal of General Microbiology 130:2147–2153
    [Google Scholar]
  13. Garro A.J., Law M.-F. 1974; Relationship between lysogeny, spontaneous induction, and transformation efficiencies in Bacillus subtilis. Journal of Bacteriology 120:1256–1259
    [Google Scholar]
  14. Gryczan T., Dubnau D. 1982; Direct selection of recombinant plasmids in Bacillus subtilis. Gene 20:459–469
    [Google Scholar]
  15. Gryczan T., Shivakumar A.G., Dubnau D. 1980a; Characterization of chimeric plasmid cloning vehicles in Bacillus subtilis. Journal of Bacteriology 141:246–253
    [Google Scholar]
  16. Gryczan T., Contente S., Dubnau D. 1980b; Molecular cloning of heterologous chromosomal DNA by recombination between a plasmid vector and a homologous resident plasmid in Bacillus subtilis. Molecular and General Genetics 177:459–467
    [Google Scholar]
  17. Henner D.M., Hoch J.A. 1980; The Bacillus subtilis chromosome. Microbiological Reviews 40:57–82
    [Google Scholar]
  18. Hoch J.A. 1971; Selection of cells transformed to prototrophy for sporulation markers. Journal of Bacteriology 105:1200–1201
    [Google Scholar]
  19. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology 150:815–825
    [Google Scholar]
  20. Iijima T., Kawamura F., Saito H., Ikeda Y. 1980; A specialized transducing phage constructed from Bacillus subtilis phage ΙΈ105. Gene 9:115–126
    [Google Scholar]
  21. Ikeuchi T, Kudoh J., Kurahashi K. 1983; Cloning of sporulation genes spoOA and spoOC of Bacillus subtilis onto p11 temperate bacteriophage. Journal of Bacteriology 154:988–991
    [Google Scholar]
  22. Jenkinson H.F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Journal of General Microbiology 129:1945–1958
    [Google Scholar]
  23. Jenkinson H.F., Deadman M. 1984; Construction and characterization of recombinant phage ΙΈ105 d(CmRmet) for cloning in Bacillus subtilis. Journal of General Microbiology 130:2155–2164
    [Google Scholar]
  24. Jenkinson H.F., Mandelstam J. 1983; Cloning of the Bacillus subtilislys and spolllB genes in phage ΙΈ105. Journal of General Microbiology 129:2229–2240
    [Google Scholar]
  25. Kawamura F., Saito H., Ikeda Y. 1979; A method for construction of specialized transducing phage p1l of Bacillus subtilis. Gene 5:87–91
    [Google Scholar]
  26. Kawamura F., Saito H., Hirochika H., Kobayashi Y. 1980; Cloning of sporulation gene, spoOF, in Bacillus subtilis with p1l phage vector. Journal of General and Applied Microbiology 26:345–355
    [Google Scholar]
  27. Kawamura F., Shimotsu H., Saito H., Hirochika H., Kobayashi Y. 1981; Cloning of spoO genes with bacteriophage and plasmid vectors in Bacillus subtilis. In Sporulation and Germination pp. 109–113 Levinson H.S., Sonenshein A.L., Tipper D.J. Edited by Washington, D.C.:: American Society for Microbiology;
    [Google Scholar]
  28. Levi-Meyrueis C., Fodor K., Schaeffer P. 1980; Polyethyleneglycol-induced transformation of Bacillus subtilis protoplasts by bacterial chromosomal DNA. Molecular and General Genetics 179:589–594
    [Google Scholar]
  29. Lovett P.S., Keggins K.M. 1979; Bacillus subtilis as a host for molecular cloning. Methods in Enzymology 68:342–357
    [Google Scholar]
  30. Maniatis T., Hardison R.C., Lacy E., Lauer J., O’Connell C., Quon D., Sim G.K., Efstratiadis A. 1978; The isolation of structural genes from libraries of eucaryotic DNA. Cell 15:687–701
    [Google Scholar]
  31. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning (a Laboratory Manual). New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  32. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  33. Messing J., Crea R., Seeburg P.H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  34. Perkins J.B., Dean D.H. 1983; Transfection of Bacillus subtilis protoplasts by bacteriophage πœ™d07 DNA. Journal of Bacteriology 156:931–933
    [Google Scholar]
  35. Peterson A.M., Rutberg L. 1969; Linked transformation of bacterial amdprophage markers in Bacillus subtilis 168 lysogenic for bacteriophage ΙΈ105. Journal of Bacteriology 98:874–877
    [Google Scholar]
  36. Piggot P.J. 1973; Mapping of asporogenous mutations of Bacillus subtilis : a minimum estimate of the number of sporulation operons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  37. Piggot P.J., Coote J.G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  38. Rigby P.W.J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  39. Roberts R.J. 1982; Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research 10:r117–rl44
    [Google Scholar]
  40. Rutberg L. 1969; Mapping of a temperate bacteriophage active on Bacillus subtilis. Journal of Virology 3:38–44
    [Google Scholar]
  41. Rutberg L., Hoch J.A., Spizizen J. 1969; Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage ΙΈ105. Journal of Virology 4:50–57
    [Google Scholar]
  42. Savva D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoil A and spoVA genes in phage ΙΈ1O5D1: lt. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  43. Schaeffer P., Ionesco H., Ryter A., Balassa G. 1965; La sporulation de Bacillus subtilis: Γ©tude gΓ©nΓ©tique et physiologique. Colloques intemationaux du centre national de la recherchescientifique 124:553–563
    [Google Scholar]
  44. Scher B.M., Dean D.H., Garro A.J. 1977; Fragmentation of Bacillus bacteriophage ΙΈ105 by restriction endonuclease EcoRI: evidence for complementary single-stranded DNA in the cohesive ends of the molecule. Journal of Virology 23:377–383
    [Google Scholar]
  45. Scher B.M., Law M.-F., Garro A.J. 1978; Correlated genetic and EcoRI cleavage map of Bacillus subtilis bacteriophage ΙΈ105 DNA. Journal of Virology 28:395–402
    [Google Scholar]
  46. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  47. Sternberg N., Tiemeier D., Enquist L. 1977; In vitro packaging of a Ξ» Dam vector containing fcoRI DNA fragments of Escherichia coli and phage PI. Gene 1:255–280
    [Google Scholar]
  48. Tanaka T. 1979; recE4-independent recombination between homologous deoxyribonucleic acid segments of Bacillus subtilis plasmids. Journal of Bacteriology 139:775–782
    [Google Scholar]
  49. Uhlen M., Flock J.-I., Phillipson L. 1981; RecE independent deletions of recombinant plasmids in Bacillus subtilis. Plasmid 5:161–169
    [Google Scholar]
  50. Venema G. 1979; Bacterial transformation. Advances in Microbial Physiology 19:245–331
    [Google Scholar]
  51. Vieira J., Messing J. 1982; The pUC plasmids, an MI3 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  52. Yasbin R.E., Wilson G.A., Young F.E. 1973; Transformation and transfection in lysogenic strains of Bacillus subtilis 168. Journal of Bacteriology 113:540–548
    [Google Scholar]
  53. Young M., Mandelstam J. 1979; Early events during bacterial endospore formation. Advances in Microbial Physiology 20:103–162
    [Google Scholar]
  54. Yudkin M.D., Turley L. 1980; suppression of asporogeny in Bacillus subtilis. Allele-specific suppression of a mutation in the spoIIA locus. Journal of General Microbiology 121:69–78
    [Google Scholar]
  55. Zinder N.D., Boeke J.D. 1982; The filamentious phage (Ff) as vectors for recombinant DNA a review. Gene 19:1–10
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-10-2615
Loading
/content/journal/micro/10.1099/00221287-130-10-2615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error