1887

Abstract

The utilization of arginine was studied in several different species. The arginine decarboxylase and agmatine deiminase pathways were found to be characteristic of species of group I as defined by Palleroni (1974) . strains had three distinct arginine catabolic pathways initiated by arginine decarboxylase, arginine deiminase and arginine oxidase, respectively. The two former routes were also present in and and in which also used arginine by a further unknown pathway. None of these pathways occurred in strains; agmatine catabolism seemed to follow an unusual route involving guanidinobutyrate as intermediate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-1-69
1984-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/1/mic-130-1-69.html?itemId=/content/journal/micro/10.1099/00221287-130-1-69&mimeType=html&fmt=ahah

References

  1. Abdelal A.T.H. 1979; Arginine catabolism by micro-organisms. Annual Review of Microbiology 33:139–168
    [Google Scholar]
  2. Archibald R. M. 1944; Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. Journal of Biological Chemistry 156:121–142
    [Google Scholar]
  3. Broman K., Lauwers N., Stalon V., Wiame J. M. 1978; Oxygen and nitrate utilization byBacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism, and other factors affecting their syntheses. Journal of Bacteriology 135:920–927
    [Google Scholar]
  4. Chou C. C., Rodwell V. 1972; Metabolism of basic amino acids inPseudomonas putida: guanido-butyrate amido-hydrolase. Journal of Biological Chemistry 241:4486–4490
    [Google Scholar]
  5. Friedrich B., Magasanik B. 1978; Utilization of arginine byKlebsiella aerogenes. . Journal of Bacteriology 133:680–685
    [Google Scholar]
  6. Friedrich B., Magasanik B. 1979; Enzymes of agmatine degradation and control of their synthesis inKlebsiella aerogenes. . Journal of Bacteriology 137:1127–1133
    [Google Scholar]
  7. Isobe K., Tani Y., Yamada H. 1982; A new enzyme, agmatine oxidase, from fungi. Agricultural and Biological Chemistry 46:1345–1351
    [Google Scholar]
  8. Meister A. 1952; Enzymatic preparation of aketo acids. Journal of Biological Chemistry 197:309–317
    [Google Scholar]
  9. Meister A. 1953; αKeto analogues of arginine, ornithine and lysine. Journal of Biological Chemistry 206:577–585
    [Google Scholar]
  10. Mercenier A., Simon J. P., Haas D., Stalon V. 1980a; Catabolism of l-arginine byPseudomonas aeruginosa. . Journal of General Microbiology 116:381–389
    [Google Scholar]
  11. Mercenier A., Simon J. P., Vander Wauven C., Haas D., Stalon V. 1980b; Regulation of enzyme synthesis in the arginine deiminase pathway ofPseudomonas aeruginosa. . Journal of Bacteriology 144:159–163
    [Google Scholar]
  12. Miller D. R., Rodwell V. 1971; Metabolism of basic amino acids inPseudomonas putida: intermediates in l-arginine catabolism. Journal of Biological Chemistry 246:5053–5058
    [Google Scholar]
  13. Morris D. R., Pardee A. B. 1971; Multiple pathways of putrescine biosynthesis inEscherichia coli. . Journal of Biological Chemistry 241:3129–3135
    [Google Scholar]
  14. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1974; Nucleic acid homologies in the genusPseudomonas. . International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  15. Rahman M., Laverack P. D., Clarke P. H. 1980; The catabolism of arginine byPseudomonas aeruginosa. . Journal of General Microbiology 116:371–380
    [Google Scholar]
  16. Simon J. P., Wargnies B., Stalon V. 1982; Control of enzyme synthesis in the arginine deiminase pathway ofStreptococcus faecalis. . Journal of Bacteriology 150:1085–1090
    [Google Scholar]
  17. Stalon V., Ramos F., Pié;rard A., Wiame J. M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase inPseudomonas fluorescens. . Biochimica et biophysica acta 139:91–97
    [Google Scholar]
  18. Stalon V., Ramos F., Pierard A., Wiame J. M. 1972; Regulation of the catabolic ornithine carbamoyltransferase ofPseudomonas fluorescens: a comparison with the anabolic transferase and with a mutationally modified catabolic transferase. European Journal of Biochemistry 29:25–35
    [Google Scholar]
  19. Stalon V., Simon J. P., Mercenier A. 1982; Enzymes of arginine utilization and their formation inAeromonas formicans NCIB 9232. Archives of Microbiology 133:295–299
    [Google Scholar]
  20. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobicPseudomonas: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  21. Tabor H., Tabor C. H., Hafner E. W. 1976; Convenient method for detecting14CO2 in multiple samples. Applications to rapid screening for mutants. Journal of Bacteriology 128:485–486
    [Google Scholar]
  22. Vanderbilt A. S., Gaby N. S., Rodwell V. 1975; Intermediates and enzymes between aketo-arginine and y-guanidinobutyrate in the l-arginine catabolic pathway ofPseudomonas putida. . Journal of Biological Chemistry 250:5322–5329
    [Google Scholar]
  23. Weathers P. S., Chee H. L., Allen M. M. 1978; Arginine catabolism inAphanocapsa 6308. Archives of Microbiology 118:1–6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-1-69
Loading
/content/journal/micro/10.1099/00221287-130-1-69
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error