1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-9-2685
1983-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/9/mic-129-9-2685.html?itemId=/content/journal/micro/10.1099/00221287-129-9-2685&mimeType=html&fmt=ahah

References

  1. Andreu J.M., Carreira J., Munoz E. 1976; Isolation and partial characterization of the two major subunits of the BF, factor (ATPase) from Micrococcus lysodeikticus and evidence for their glycoprotein nature. FEBS Letters 65:198–203
    [Google Scholar]
  2. Andreu J.M., Warth R., Munoz E. 1978; Glycoprotein nature of energy-transducing ATP-ases. Chemical characterization of glycopeptides isolated from bacterial and chloroplast coupling factors. FEBS Letters 86:1–5
    [Google Scholar]
  3. Axelsen N.H., Kroll J., Weeke B. 1973 A Manual of Quantitative Immunoelectrophoresis. Methods and Applications. Scandinavian Journal of Immunology 2: Suppl. 1 15–169
    [Google Scholar]
  4. Baddiley J. 1968; The Leeuwenhoek Lecture, 1967. Teichoic acids and the molecular structure of bacterial walls. Proceedings of the Royal Society B170:331–348
    [Google Scholar]
  5. Baddiley J. 1972; Teichoic acids in cell walls and membranes. In Essays in Biochemistry 8 pp. 35–77 Edited by Campbell P.N., Dickens F. New York: Academic Press;
    [Google Scholar]
  6. Biketov S.F., Kasho V.N., Kozlov I.A., Mileykovskaya Y.I., Ostrovsky D.N., Skula-CHEV V.P., Tikhonova G.A., Tsuprun V.L. 1982; F,-like ATPase from anaerobic bacterium Lactobacillus casei contains six similar subunits. European Journal of Biochemistry 129:241–250
    [Google Scholar]
  7. Bjerrum O.J. 1975; Quantitative immunoelectrophoresis for comparative analysis of membrane proteins from various mammalian species. International Journal of Biochemistry 6:513–519
    [Google Scholar]
  8. Blumberg P.M., Strominger J.L. 1974; Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriological Reviews 38:291–335
    [Google Scholar]
  9. Bog-Hansen T.C., Bjerrum O.J., Ramlau J. 1974; Quaternary protein structure of spectrin studied by immunoelectrophoresis with antibodies to erythrocyte membrane material. International Research Communications System 2:1279
    [Google Scholar]
  10. Boulain J.-C., Menez A. 1982; Neurotoxin-specific immunoglobulins accelerate dissociation of the neurotoxin-acetylcholine receptor complex. Science 217:732–733
    [Google Scholar]
  11. Brady R.O., Fishman P.H. 1975; Membranes of transformed mammalian cells. In Biochemistry of Cell Walls and Membranes. Biochemistry Series One 2 pp. 61–96 Edited by Fox C.F. London: Butterworth;
    [Google Scholar]
  12. Bretscher M.S., Raff M.C. 1975; Mammalian plasma membranes. Nature, London 258:43–49
    [Google Scholar]
  13. Carraway K.L. 1975; Covalent labeling of membranes. Biochimica et biophysica acta 415:379–410
    [Google Scholar]
  14. Clarke H.G.M., Freeman T. 1967; A quantitative immuno-electrophoresis method (Laur-ell electrophoresis). In Protides of the Biological Fluids 14 pp. 503–509 Edited by Peeters H. Amsterdam: Elsevier;
    [Google Scholar]
  15. Collins M.L.P., Salton M.R.J. 1979; Solubility characteristics of Micrococcus lysodeikticus membrane components in detergents and chaotropic salts analyzed by immunoelectrophoresis. Biochimica et biophysica acta 553:40–53
    [Google Scholar]
  16. Crowe B.A., Owen P. 1983; Molecular properties of succinate dehydrogenase isolated from Micrococcus luteus (lysodeikticus). . Journal of Bacteriology 153:1493–1501
    [Google Scholar]
  17. Crumpton M.J. 1974; Protein antigens: the molecular basis of antigenicity and immunogenicity. In The Antigens II pp. 1–78 Edited by Sela M. New York: Academic Press;
    [Google Scholar]
  18. Czerkawski J.W., Perkins H.R., Rogers H.J. 1963; A study of the composition and structure of the cell-wall mucopeptide of Micrococcus lysodeikticus. . Biochemical Journal 86:468–474
    [Google Scholar]
  19. Danielli J.F., Davson H. 1935; A contribution to the theory of permeability of thin films. Journal of Cellular and Comparative Physiology 5:495–508
    [Google Scholar]
  20. Dawson I.M. 1949; The nature of bacterial surfaces (Discussion). Symposia of the Society for General Microbiology 1: p. 119 plate 5
    [Google Scholar]
  21. Dejter-Juszynski M., Harpaz N., Flowers H.M., Sharon N. 1978; Blood group ABH-specific macroglycolipids of human erythrocytes: isolation in high yield from a crude membrane glycoprotein fraction. European Journal of Biochemistry 83:363–373
    [Google Scholar]
  22. Doherty H., Condon C., Owen P. 1982; Resolution and in vitro glycosylation of membrane glycoproteins in Micrococcus luteus (lysodeikticus). FEMS Microbiology Letters 15:331–336
    [Google Scholar]
  23. Downie J.A., Gibson F., Cox G.B. 1979; Membrane adenosine triphosphatases of prokaryotic cells. Annual Review of Biochemistry 48:103–131
    [Google Scholar]
  24. Elliott T.S.J., Ward J.B., Wyrick P.B., Rogers H.J. 1975; Ultrastructural study of the reversion of protoplasts of Bacillus licheniformis to bacilli. Journal of Bacteriology 124:905–917
    [Google Scholar]
  25. Freimer E.H. 1963; Studies of L forms and protoplasts of group A streptococci. II. Chemical and immunological properties of the cell membrane. Journal of Experimental Medicine 117:377–399
    [Google Scholar]
  26. Fukui Y., Nachbar M.S., Salton M.R.J. 1971; Immunochemistry and peptide mapping of Micrococcus lysodeikticus membrane proteins. Biochimica et biophysica acta 241:30–41
    [Google Scholar]
  27. Gale E.F., Taylor S. 1947; The assimilation of amino-acids by bacteria. 2. The action of tyrocidin and some detergent substances in releasing amino-acids from the internal environment of Streptococcus faecalis. . Journal of General Microbiology 1:77–84
    [Google Scholar]
  28. Gardas A. 1976; A structural study on a macroglycolipid containing 22 sugars isolated from human erythrocytes. European Journal of Biochemistry 68:177–183
    [Google Scholar]
  29. Gay N.J., Walker J.E. 1983; Homology between human bladder carcinoma oncogene product and mitochondrial ATP-synthase. Nature, London 301:262–264
    [Google Scholar]
  30. Gel’man N.S., Lukoyanova M.A., Ostrovskii D.N. 1975 Bacterial Membranes and the Respiratory Chain. Biomembranes 6 New York: Plenum Press;
    [Google Scholar]
  31. Ghuysen J.M. 1968; Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriological Reviews 32:425–464
    [Google Scholar]
  32. Ghuysen J.M., Strominger J.L., Tipper D.J. 1968; Bacterial cell walls. In Comprehensive Biochemistry 26A pp. 53–104 Edited by Florkin M., Stotz E.H. New York: American Elsevier;
    [Google Scholar]
  33. Holden M., Tracey M. 1950; A study of enzymes that can break down tobacco leaf components. Digestive juice of Helix on defined substrates. Biochemical Journal 47:407–414
    [Google Scholar]
  34. Huberman M., Salton M.R.J. 1979; Purification and properties of the latent F1-ATPase of Micrococcus lysodeikticus. . Biochimica et biophysica acta 547:230–240
    [Google Scholar]
  35. Inouye M. 1979; What is the outer membrane?. In Bacterial Outer Membranes: Biogenesis and Function pp. 1–12 Edited by Inouye M. New York: John Wiley;
    [Google Scholar]
  36. Janczura E., Perkins H.R., Rogers H.J. 1961; Teichuronic acid: a mucopolysaccharide present in wall preparations from vegetative cells of Bacillus subtilis. . Biochemical Journal 80:82–93
    [Google Scholar]
  37. Jeanloz R.W., Sharon N., Flowers H.M. 1963; The chemical structure of a disaccharide isolated from Micrococcus lysodeikticus cell wall. Biochemical and Biophysical Research Communications 13:20–25
    [Google Scholar]
  38. Johansson K.E., Hjerten S. 1974; Localization of the Tween 20-soluble membrane proteins of Acholeplasma laidlawii by crossed immunoelectrophoresis. Journal of Molecular Biology 86:341–348
    [Google Scholar]
  39. Kahane I., Razin A. 1969; Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. . Biochimica et biophysica acta 183:79–89
    [Google Scholar]
  40. Kandler O. 1982; Cell wall structures and their phylogenetic implications. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, / Abteilung, Originale C-Allgemeine, Angewandte und Okologische Mikrobiologie 3:149–160
    [Google Scholar]
  41. Kanner B.I., Nelson N., Gutnick D.L. 1975; Differentiation between mutants of Escherichia coliK12 defective in oxidative phosphorylation. Biochimica et biophysica acta 396:347–359
    [Google Scholar]
  42. Knaysi G. 1951 Elements of Bacterial Cytology, 2nd edn. pp. 114–134 Ithaca, N.Y.: Comstock Publishing Co.;
    [Google Scholar]
  43. König H., Kandler O. 1979; N-Acetyltalosamin- uronic acid a constituent of the pseudomurein of the genus Methanobacterium. . Archives of Microbiology 123:295–299
    [Google Scholar]
  44. Landman O.E., Ryter A., Frehel C. 1968; Gelatin-induced reversion of protoplasts of Bacillus subtilis to the bacillary form: electron microscopic and physical study. Journal of Bacteriology 96:2154–2170
    [Google Scholar]
  45. Lando B., Berzofsky J.A., Reichlin M. 1982; Antigenic structure of sperm whale myoglobin. I. Partition of specificities between antibodies reactive with peptides and native protein. Journal of Immunology 129:206–216
    [Google Scholar]
  46. Laurell C. 1965; Antigen-antibody crossed immunoelectrophoresis. Analytical Biochemistry 10:358–361
    [Google Scholar]
  47. Lerner R.A. 1982; Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature, London 299:592–596
    [Google Scholar]
  48. Lim S., Salton M.R.J. 1981; F,-ATPase of Micrococcus lysodeikticus is not a glycoprotein. Biochimica et biophysica acta 638:275–281
    [Google Scholar]
  49. Mcquillen K. 1960; Bacterial protoplasts. In The Bacteria 1 pp. 249–359 Edited by Gunsalus I.C., Stanier R. Y. New York: Academic Press;
    [Google Scholar]
  50. Marchesi V.T. 1975; Molecular orientation of proteins in membranes. In Biochemistry of Cell Walls and Membranes. Biochemistry Series One 2 pp. 123–156 Edited by Fox C.F. London: Butterworth;
    [Google Scholar]
  51. Mescher M.F., Strominger J.L. 1976; Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. . Proceedings of the National Academy of Sciences of the United States of America 73:2687–2691
    [Google Scholar]
  52. Mitchell P. 1968 Chemiosmotic Coupling and Energy Transduction Bodmin: Glynn Research;
    [Google Scholar]
  53. Mudd S., Lackman D.B. 1941; Bacterial morphology as shown by the electron microscope. I. Structural differentiation within the streptococcal cell. Journal of Bacteriology 41:415–420
    [Google Scholar]
  54. Mudd S., Polevitzky K., Anderson T.F., Chambers L.A. 1941; Bacterial morphology as shown by the electron microscope. II. The bacterial cell-wall in the genus Bacillus. . Journal of Bacteriology 42:251–264
    [Google Scholar]
  55. Mudd S., Polevitzky K., Anderson T.F., Kast C.C. 1942; Bacterial morphology as shown by the electron microscope. III. Cell-wall and protoplasm in a strain of fusobacterium. Journal of Bacteriology 44:361–366
    [Google Scholar]
  56. Muñoz E. 1982; Polymorphism and conformational dynamics of F,-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Biochimica et biophysica acta 650:233–265
    [Google Scholar]
  57. Muñoz E., Salton M.R.J., Ng M.H., Schor M.T. 1969; Membrane adenosine triphosphatase of Micrococcus lysodeikticus. Purification, properties of the “soluble” enzyme and properties of the membrane-bound enzyme. European Journal of Biochemistry 7:490–501
    [Google Scholar]
  58. Nalin C.M., Cross R.L., Lucas J.L., Kohlbrenner W.E. 1979; Lack of evidence for covalently-bound carbohydrates in energy-transducing ATPases from mitochondria, bacteria, and chloroplasts. FEBS Letters 104:209–214
    [Google Scholar]
  59. Nelson N., Deters D.W., Nelson H., Racker E. 1973; Partial resolution of the enzymes catalyzing photophosphorylation. III. Properties of isolated subunits of coupling factor 1 from spinach chloroplasts. Journal of Biological Chemistry 248:2049–2055
    [Google Scholar]
  60. Oppenheim J.D., Salton M.R.J. 1973; Localization and distribution of Micrococcus lysodeikticus membrane ATPase determined by ferritin labeling. Biochimica et biophysica acta 298:297–322
    [Google Scholar]
  61. Osborn M.J., Gander J.E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium. . Journal of Biological Chemistry 247:3962–3972
    [Google Scholar]
  62. Ostrovsky D.N., Urban C., Reshetnyak V.I., Salton M.R.J. 1981; Immunochemical study of the proteins of the bacterial membrane outer layer. Biokhimiya 46:1321–1330
    [Google Scholar]
  63. Owen P. 1981; Immunology of the bacterial membrane. In Organization of Prokaryotic Cell Membranes 1 pp. 73–164 Edited by Ghosh B.K. Boca Ratan, FI.: CRC Press;
    [Google Scholar]
  64. Owen P., Kaback H.R. 1979; Immunochemical analysis of membrane vesicles of Escherichia coli. . Biochemistry 18:1413–1422
    [Google Scholar]
  65. Owen P., Salton M.R.J. 1975; Antigenic and enzymatic architecture of Micrococcus lysodeikticusmembranes established by crossed immunoelectrophoresis. Proceedings of the National Academy of Sciences of the United States of America 72:3711–3715
    [Google Scholar]
  66. Owen P., Salton M.R.J. 1976; Submicrogram quantitation of an acidic polysaccharide by rocket immunoelectrophoresis and rocket affinoelectro- phoresis. Analytical Biochemistry 73:20–26
    [Google Scholar]
  67. Owen P., Salton M.R.J. 1977; Membrane asymmetry and expression of cell surface antigens of Micrococcus lysodeikticus established by crossed immunoelectrophoresis. Journal of Bacteriology 132:974–985
    [Google Scholar]
  68. Owen P., Smyth C.J. 1977; Enzyme analysis by quantitative immunoelectrophoresis. In Immuno- chemistry of Enzymes and their Antibodies pp. 147–202 Edited by Salton M. R. J. New York: John Wiley;
    [Google Scholar]
  69. Perkins H.R. 1960; The structure of a disaccharide liberated by lysozyme from the cell walls of Micrococcus lysodeikticus. . Biochemical Journal 74:182–186
    [Google Scholar]
  70. Perkins H.R. 1963; A polymer containing glucose and aminohexuronic acid isolated from the cell walls of Micrococcus lysodeikticus. . Biochemical Journal 86:475–483
    [Google Scholar]
  71. Pirie N.W. 1949; The nature of the bacterial surface. Symposia of the Society for General Microbiology 1:1–8
    [Google Scholar]
  72. Razin S. 1967; The cell membrane of Mycoplasma. . Annals of the New York Academy of Sciences 143:115–129
    [Google Scholar]
  73. Rogers H.J., Perkins H.R., Ward J.B. 1980 Microbial Cell Walls and Membranes pp. 1–564 New York: Chapman & Hall;
    [Google Scholar]
  74. Rothman J.E., Lenard J. 1977; Membrane asymmetry. The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753
    [Google Scholar]
  75. Rott R., Nelson N. 1981; Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria. Journal of Biological Chemistry 256:9224–9228
    [Google Scholar]
  76. Salton M.R.J. 1952a; Studies of the bacterial cell wall. III. Preliminary investigations of the chemical constitution of the cell wall of Streptococcus faecal is. . Biochimica et biophysica acta 8:510–519
    [Google Scholar]
  77. Salton M.R.J. 1952b; Cell wall of Micrococcus lysodeikticus as the substrate of lysozyme. Nature, London 170:746–747
    [Google Scholar]
  78. Salton M.R.J. 1953; Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochimica et biophysica acta 10:512–523
    [Google Scholar]
  79. Salton M.R.J. 1956; Studies of the bacterial cell wall. V. The action of lysozyme on cell walls of some lysozyme-sensitive bacteria. Biochimica et biophysica acta 22:495–506
    [Google Scholar]
  80. Salton M.R.J. 1978; Structure and function of bacterial plasma membranes. Symposia of the Society for General Microbiology 28:201–223
    [Google Scholar]
  81. Salton M.R.J. 1980; Structure-function relationships of Micrococcus lysodeikticus membranes: a bacterial membrane model system. In Subcellular Biochemistryv 7 pp. 309–373 Edited by Roodyn D.B. New York: Plenum;
    [Google Scholar]
  82. Salton M.R.J., Freer J.H. 1965; Composition of the membranes isolated from several Grampositive bacteria. Biochimica et biophysica acta 107:531–538
    [Google Scholar]
  83. Salton M.R.J., Ghuysen J.-M. 1959; The structure of di- and tetra-saccharides released from cells walls by lysozyme and Streptomyces F! enzyme and the β(l→4) V-acetylhexosaminidase activity of these enzymes. Biochimica et biophysica acta 36:552–554
    [Google Scholar]
  84. Salton M.R.J., Horne R.W. 1951; Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls. Biochimica et biophysica acta 7:177–197
    [Google Scholar]
  85. Salton M.R.J., Owen P. 1976; Bacterial membrane structure. Annual Review of Microbiology 30:451–482
    [Google Scholar]
  86. Schleifer K.H., Kandler O. 1967; Micrococcus lysodeikticus: a new type of cross-linkage of the murein. Biochemical and Biophysical Research Communications 28:965–971
    [Google Scholar]
  87. Schleifer K.H., Kandler O. 1972; Peptido- glycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36:407–477
    [Google Scholar]
  88. Schnaitman C.A. 1970; Protein composition of the cell wall and cytoplasmic membrane of Escherichia coli. . Journal of Bacteriology 104:890–901
    [Google Scholar]
  89. Sela S., Schechter B., Schechter I., Borek F. 1967; Antibodies to sequential and conformational determinants. Cold Spring Harbor Symposia on Quantitative Biology 32:537–544
    [Google Scholar]
  90. Simakova I.M., Ostrovsky D.N. 1980; Proteolysis as an approach to the study of the arrangement of proteins in the M. lysodeikticus membrane. Biokhimiya 45:363–370
    [Google Scholar]
  91. Sleytr U.B. 1975; Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature, London 257:400–402
    [Google Scholar]
  92. Smith J.B., Sternweis P.C. 1982; Subunit specific antisera to the Escherichia coli ATP synthase : effects on ATPase activity, energy transduction, and enzyme assembly. Archives of Biochemistry and Biophysics 217:376–387
    [Google Scholar]
  93. Stephenson, Marjory . 1949 Bacterial Metabolism, 3rd edn. p.11 London: Longman;
    [Google Scholar]
  94. Sternweis P.C. 1978; The e subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane. Journal of Biological Chemistry 253:3123–3128
    [Google Scholar]
  95. Strange R.E., Dark F.A. 1956; An unidentified amino-sugar in cell walls and spores of various bacteria. Nature, London 177:186–188
    [Google Scholar]
  96. Strominger J.L. 1970; Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lectures 64:179–213
    [Google Scholar]
  97. Tikhonova G.V. 1974; Some properties of ApH+ generators in Micrococcus lysodeikticus membranes. In Membrane Adenosine Triphosphatases and Transport Processes Biochemical Society Special Publication No 4 pp. 131–143 Edited by Bronk J.R. London: The Biochemical Society;
    [Google Scholar]
  98. Tikhonova G.V., Iyelekht L.E., Ostrovsky D.N. 1978; Does the respiratory chain of Micrococcus lysodeikticus have redox components on the outer surface of the cytoplasmic membrane?. Biochemistry (English translation of Biokhimiya) 43:2163–2174
    [Google Scholar]
  99. Urban C., Salton M.R.J. 1983a; Immunochemical analysis of Micrococcus lysodeikticus (luteus)F,-ATPase and its subunits. Biochimica et biophysica acta (in the Press)
    [Google Scholar]
  100. Urban C., Salton M.R.J. 1983; b)Antigenic expression of the Micrococcus lysodeikticus (luteus) Fj-ATPase as determined by immunoelectrophore- tic analysis. FEMS Microbiology Letters (in the Press)
    [Google Scholar]
  101. Uriel J. 1971; Characterization of precipitates in gels. 1. Color reactions for the identification of antigen-antibody precipitates in gels. In Methods in Immunology and Immunochemistry III pp. 294–357 Edited by Williams C. A., Chase M.W. New York: Academic Press;
    [Google Scholar]
  102. Vincenzi L. 1887; Ueber die chemischen Bestand- theile der Spaltpilze. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 11:181–183
    [Google Scholar]
  103. Weibull C. 1948; Some chemical and physicochemical properties of the flagella of Proteus vulgaris. . Biochimica et biophysica acta 2:351–361
    [Google Scholar]
  104. Weibull C. 1953; The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. Journal of Bacteriology 66:688–695
    [Google Scholar]
  105. Whiteside T.L., Salton M.R.J. 1970; Antibody to adenosine triphosphatase from membranes of Micrococcus lysodeikticus. . Biochemistry 9:3034–3040
    [Google Scholar]
  106. Whiteside T.L., Desiervo A.J., Salton M.R.J. 1971; Use of antibody to membrane adenosine triphosphatase in the study of bacterial relationships. Journal of Bacteriology 105:957–967
    [Google Scholar]
  107. Wicken A.J., Knox K.W. 1975; Lipoteichoic acids: a new class of bacterial antigen. Science 187:1161–1167
    [Google Scholar]
  108. Wlentjes F.B., Riet J., Van, Nanninga N. 1979; Formation of inside-out vesicles of Bacillus licheni- formis. Dependence on buffer composition and lysis procedure. Biochimica et biophysica acta 553:213–223
    [Google Scholar]
  109. Wyckoff R.W.G. 1948; The electron microscopy of developing bacteriophage. I. Plaques on solid media. Biochimica et biophysica acta 2:27–37
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-9-2685
Loading
/content/journal/micro/10.1099/00221287-129-9-2685
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error