1887

Abstract

The high substrate yield factor (0·73 g biomass g glucose) and low R.Q. (respiratory quotient, i.e. mol CO evolved per mol O consumed) value (0·8) measured during growth-phase batch cultures of could be rationalized in terms of the fermentation mass balance when the oxidized elemental composition of biomass was considered. R.Q. was also indicative of the sequence of secondary metabolite formation, the value rising in steps as each new product was formed. The period of maximum respiratory activity and phosphate uptake preceded maximum growth and glucose uptake. At the end of the lytic phase, a cyclopentenedione cobalt chelator was produced. The termination of lysis coincided with melanin production. Sequential cephamycin C and thienamycin production then took place. Specific hyphal protein content (per unit RNA) peaked before the production of each new metabolite. Melanin, cephamycin C and thienamycin production were initiated when glucose, ammonia and phosphate, respectively, became growth-limiting.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-6-1733
1983-06-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/6/mic-129-6-1733.html?itemId=/content/journal/micro/10.1099/00221287-129-6-1733&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1977; Influence of inorganic phosphate and organic buffers on cephalosporin production by Streptomyces clavuligerus. Archives of Microbiology 115:169–173
    [Google Scholar]
  2. Aharonwitz Y., Demain A. L. 1978; Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 14:159–164
    [Google Scholar]
  3. Aharonowitz Y., Demain A. L. 1979; Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Canadian Journal of Microbiology 25:61–67
    [Google Scholar]
  4. Ahlberg J. H., Nilson E. N., Walsh J. L. 1967 The Theory of Splines and Their Application. London: Academic Press;
    [Google Scholar]
  5. Allen S. E., Grimshaw H. M., Parkinson J. A., Quarmby C. 1974 Chemical Analyses of Ecological Materials Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  6. Alroy Y., Tannenbaum S. R. 1973; The influence of environmental conditions on the macromolecular composition of Candida utilis. Biotechnology and Bioengineering 15:239–256
    [Google Scholar]
  7. Bryant J. 1970; Antifoam agents. Methods in Microbiology 2:187–203
    [Google Scholar]
  8. Bull A. T. 1970; Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Archives of Biochemistry and Biophysics 137:345–356
    [Google Scholar]
  9. Bushell M. E. 1982; Microbiological aspects of the discovery of novel secondary metabolites. In Topics in Enzyme and Fermentation Biotechnology 6 pp. 3267 Edited by Wiseman A. Chichester: Ellis Horwood;
    [Google Scholar]
  10. Bushell M. E., Nisbet L. J. 1981; A technique for eliminating recurring producers of known metabolites in antibiotic screens. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Supplement 11:507–514
    [Google Scholar]
  11. Cooney C. L., Wang H. Y., Wang D. I. C. 1977; Computer aided material balancing for prediction of fermentation parameters. Biotechnology and Bioengineering 19:55–67
    [Google Scholar]
  12. Erickson L. E., Minkewich I. G., Eroshin V. K. 1979; Utilization of mass-energy balance regularities in the analysis of continuous culture data. Biotechnology and Bioengineering 21:575–591
    [Google Scholar]
  13. Herbert D. 1976; Stoicheiometric aspects of microbial growth. In Continuous Culture 6: Applications and New Fields pp. 1–39 Edited by Dean A. C. R., Ellwood D. C., Evans C. G. T., Melling J. Chichester: Ellis Horwood;
    [Google Scholar]
  14. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  15. Hopwood D. A. 1981; Genetic studies of antibiotic and other secondary metabolites. In Genetics as a Tool in Microbiology pp. 187–218 Edited by Glover S. W., Hopwood D. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  16. Kahan J. S., Kahan F. M., Goegelman R., Curris S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S., Hernandez S., Woodruff H. B., Birnbaum J. 1979; Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. Journal of Antibiotics 32:1–12
    [Google Scholar]
  17. Kitano K., Kintaka K., Suzuki S., Katamoto K., Nara K., Nakao Y. 1975; Production of beta- lactam antibiotics. I. Screening of microorganisms capable of producing beta-lactam antibiotics. Hakko Kogaku Zasshi 53:327–338
    [Google Scholar]
  18. Lilley G., Clark A. E., Lawrence G. C. 1981; Control of the production of cephamycin C and thienamycin by Streptomyces cattleya NRRL 8057. Journal of Chemical Technology and Biotechnology 31:127–134
    [Google Scholar]
  19. Mackereth F. J. H., Heron J., Talling J. F. 1978 Water Analysis. Freshwater Biological Association Scientific Publication no. 36
    [Google Scholar]
  20. Marczenco C. 1976 Spectrophotometric Determination of Elements Chichester: Ellis Horwood;
    [Google Scholar]
  21. Martin J. F., Demain A. L. 1980; Control of antibiotic synthesis. Microbiological Reviews 44:230–251
    [Google Scholar]
  22. Napier E. J., Evans J. R., Noble D., Bushell M. E., Webb G., Brown D. 1977; Chemical compounds (metabolites of Streptomyces clavuligerus). German Patent 2725690
    [Google Scholar]
  23. Neilands J. B. 1967; Hydroxamic acids in nature. Science 156:1443–1447
    [Google Scholar]
  24. Noble M., Noble D., Fleton R. A. 1978; G2201- C, A new cyclopentenedione antibiotic isolated from the fermentation broth of Streptomyces cattleya. Journal of Antibiotics 31:15–18
    [Google Scholar]
  25. Pitt D. E., Bull A. T. 1982; Influence of culture conditions on the physiology and composition of Trichoderma aureoviride. Journal of General Microbiology 128:1517–1527
    [Google Scholar]
  26. Roels J. A. 1980; Simple model for the energetics of growth on substrates with different degrees of reduction. Biotechnology and Bioengineering 22:33–53
    [Google Scholar]
  27. Sawada Y., Hunt N. A., Demain A. L. 1979; Further studies on microbiological ring expansion of penicillin N. Journal of Antibiotics 32:1303–1310
    [Google Scholar]
  28. Umezawa H. 1967; Index of Antibiotics from Actino- mycetes. Tokyo: University of Tokyo Press;
    [Google Scholar]
  29. Wang H. Y., Cooney C. L., Wang D. I. C. 1977; Computer aided baker’s yeast fermentations. Biotechnology and Bioengineering 19:69–86
    [Google Scholar]
  30. Zahner H. 1978; The search for new secondary metabolites. In Antibiotics and Other Secondary Metabolites pp. 1–17 Edited by Hutter R., Leisimaer T. L., Nuesch J., Wehrli W. London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-6-1733
Loading
/content/journal/micro/10.1099/00221287-129-6-1733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error