1887

Abstract

An plasmid, p1949, that is derived from pMB9 and pC194, and unable to replicate in , can give rise to stable Cm transformants of the latter species if it is inserted into the bacterial chromosome. A purified segment of the chromosome, with transforming activity against and recipients, was used to direct the insertion of p1949 into the chromosome. Insertion of the ligated DNA segments occurred in the region of the chromosome from which the purified segment was derived. Many of the properties of the resulting Cm transformants of are consistent with the occurrence of a Campbell recombination mechanism leading to integration. However, certain of these properties are more easily explained if it is proposed that integration occurs by a reciprocal recombination event involving a linear ligation product. Evidence is presented suggesting that the inserted sequences may be tandemly duplicated. This may effectively vitiate the use of p1949 as a convenient means for complementation analysis of recessive mutations in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1497
1983-05-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1497.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1497&mimeType=html&fmt=ahah

References

  1. Adams A. 1972; Transformation and transduction of a large deletion mutation in Bacillus subtilis. Molecular and General Genetics 118:311–322
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  3. Anderson L. M., Ruley H. E., Bott K. F. 1982; Isolation of an autonomously replicating DNA fragment from the region of defective bacteriophage PBSX of Bacillus subtilis. Journal of Bacteriology 150:1280–1286
    [Google Scholar]
  4. Bresler S. E., Kreneva R. A., Kusher V. V. 1968; Correction of molecular heterozygotes in the course of transformation. Molecular and General Genetics 102:257–268
    [Google Scholar]
  5. Campbell A. M. 1962; Episomes. Advances in Genetics 11:101–145
    [Google Scholar]
  6. Chak K. F., De Lencastre H., Liu H-M., Piggot P. J. 1982; Facile in vivo transfer of mutations between the Bacillus subtilis chromosome and a plasmid harbouring homologous DNA. Journal of General Microbiology 128:2813–2816
    [Google Scholar]
  7. Chan C. S. M., Tye B. K. 1980; Autonomously replicating sequences in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 77:6329–6333
    [Google Scholar]
  8. Clewell D. B., Helinski D. R. 1969; supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proceedings of the National Academy of Sciences of the United States of America 62:1159–1166
    [Google Scholar]
  9. Donellan J. E.Jr Nags E. H., Levinson H. S. 1964; Chemically defined, synthetic media for sporulation and for germination and growth of Bacillus subtilis. Journal of Bacteriology 87:332–336
    [Google Scholar]
  10. Dugaiczyk A., Boyer H. W., Goldman H. M. 1975; Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. Journal of Molecular Biology 96:171–184
    [Google Scholar]
  11. Duncan C. H., Wilson G. A., Young F. E. 1978; Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 75:3664–3668
    [Google Scholar]
  12. Ephrati-Elizur E. . 1968; Spontaneous transformation in Bacillus subtilis. Genetical Research 11:83–96
    [Google Scholar]
  13. Ferrari F. A., Lang D., Ferrari E., Hoch J. A. 1982; Molecular cloning of the spoOB sporulation locus in bacteriophage lambda. Journal of Bacteriology 152:809–814
    [Google Scholar]
  14. Fink P. S., Zahler S. A. 1982; Specialised transduction of the ilvD-thyB-ilvA region mediated by Bacillus subtilis bacteriophage SPβ. Journal of Bacteriology 150:1274–1279
    [Google Scholar]
  15. Galizzi A., Scoffone F., Milanesi G., Albertini A. M. 1981; Integration and excision of a plasmid in Bacillus subtilis. Molecular and General Genetics 182:99–105
    [Google Scholar]
  16. Grant W. D. 1974; Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase. Journal of General Microbiology 82:363–369
    [Google Scholar]
  17. Haldenwang W. G., Banner C. D. B., Ollington J. F., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping of a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology 142:90–98
    [Google Scholar]
  18. Harris-Warwick R. M., Lederberg J. 1978; Interspecies transformation in Bacillus : mechanism of heterologous intergenote transformation. Journal of Bacteriology 133:1246–1253
    [Google Scholar]
  19. Harris-Warwick R. M., Elkana Y., Ehrlich S. D., Lederberg J. 1975; Electrophoretic separation of Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America 72:2207–2211
    [Google Scholar]
  20. Hoch J. A., Matthews J. L. 1973; Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics 73:215–228
    [Google Scholar]
  21. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology 150:815–825
    [Google Scholar]
  22. Hranueli D., Piggot P. J., Mandelstam J. 1974; Statistical estimate of the total number of opérons specific for Bacillus subtilis sporulation. Journal of Bacteriology 119:684–690
    [Google Scholar]
  23. Iglesias A., Bensi G., Canosi U., Trautner T. A. 1981; Plasmid transformation in Bacillus subtilis. Alterations introduced into the recipient-homologous DNA of hybrid plasmids can be corrected in transformation. Molecular and General Genetics 184:405–409
    [Google Scholar]
  24. IordĂnescu S. 1975; Recombinant plasmid obtained from two different, compatible staphylococcal plasmids. Journal of Bacteriology 124:597–601
    [Google Scholar]
  25. Jeffries A. J., Flavell R. A. 1977; A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439
    [Google Scholar]
  26. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Molecular and General Genetics 108:277–287
    [Google Scholar]
  27. Kawamura F., Saito M., Ikeda Y. 1979; A method for construction of specialised transducing phage p11 of Bacillus subtilis. Gene 5:87–91
    [Google Scholar]
  28. Lataste H., Claverys J-P., Sicard A. M. 1981; Relation between the transforming activity of a marker and its proximity to the end of the DNA particle. Molecular and General Genetics 183:199–201
    [Google Scholar]
  29. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  30. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  31. Méjean V., Claverys J-P., Vasseghi H., Sicard A-M. 1981; Rapid cloning of specific DNA fragments of Streptococcus pneumoniae by vector integration into the chromosome followed by endonucleolytic excision. Gene 15:289–293
    [Google Scholar]
  32. Messer W., Bergmans H. E. N., Meijer M., Womack J. E., Hansen F. G., Von Meyenburg K. 1978; Minichromosomes: plasmids which carry the E. coli replication origin. Molecular and General Genetics 162:269–275
    [Google Scholar]
  33. Nester E. W., Schafer M., Lederberg J. 1963; Gene linkage in DNA transfer: a cluster of genes concerned with aromatic biosynthesis in Bacillus subtilis. Genetics 48:529–551
    [Google Scholar]
  34. Niaudet B., Ehrlich S. D. 1979; In vitro genetic labelling of Bacillus subtilis cryptic plasmid pHV400. Plasmid 2:48–58
    [Google Scholar]
  35. Niaudet B., Goze A., Ehrlich S. D. 1982; Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene 19:277–284
    [Google Scholar]
  36. Oeschger M. P., Oeschger N. S., Wiprud G. T., Woods S. L. 1980; High efficiency temperaturesensitive amber suppressor strains of Escherichia coli K12: isolation of strains with suppressor-enhancing mutations. Molecular and General Genetics 177:545–552
    [Google Scholar]
  37. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation opcrons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  38. Rapoport G., Klier A., Billault A., Fargette F., Dedonder R. 1979; Construction of a colony bank of E. coli containing hybrid plasmids representative of the Bacillus subtilis 168 genome. Molecular and General Genetics 176:239–245
    [Google Scholar]
  39. Rubin E. M., Wilson C. A., Young F. E. 1980; Expression of thymidylate synthetase activity in Bacillus subtilis upon integration of a cloned gene from Escherichia coli. Gene 10:227–235
    [Google Scholar]
  40. Sager R., Anisowicz A., Howell N. 1981; Genomic rearrangements in a mouse cell line containing integrated SV40 DNA. Cell 23:41–50
    [Google Scholar]
  41. Schneider A.-M., Anagnostopoulos C. 1981; Linkage maps and properties of a Bacillus suhtilis strain carrying a non-tandem duplication of the purB-tre region of the chromosome. Journal of General Microbiology 125:241–256
    [Google Scholar]
  42. Smith G. R., Kunes S. M., Schultz D. W., Taylor A., Triman K. L. 1981; Structure of chi hotspots of generalised recombination. Cell 24:429–436
    [Google Scholar]
  43. Southern E. M. 1975; Detection of specific se- quences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  44. Spatz H. C., Trautner T. A. 1970; One way to do experiments on gene conversion: transfection with heteroduplex SPP1 DNA. Molecular and General Genetics 109:84–106
    [Google Scholar]
  45. Stahl F. W. 1979; Special sites in generalised recombination. Annual Review of Genetics 13:7–24
    [Google Scholar]
  46. Takahashi I. 1963; Transducing phages for Bacillus suhrilis. Journal of Genera1 Microbiology 31:211–217
    [Google Scholar]
  47. Tanaka T. 1979; recE4-independent recombination between homologous deoxyribonucleic acid seg- ments of Bacillus suhtilis plasmids. Journal of Bacteriology 139:775–782
    [Google Scholar]
  48. Trowsdale J., Anagnostopoulos C. 1975; Evidence for the translocation of a chromosome segment in Bacillus subtilis strains carrying the trpE26 mutation. Journal of Bacteriology 122:886–898
    [Google Scholar]
  49. Trowsdale J., Anagnostopoulos C. 1976; Differences in the genetic structure of Bacillus subtilis strains carrying the trpE26 mutation and strain 168. Journal of Bacteriology 126:609–618
    [Google Scholar]
  50. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridisation by using dextran sulfate. Proceedings of the National Academy of Sciences of the United States of America 76:3683–3687
    [Google Scholar]
  51. Wilson F. E., Hoch J. A., Bott K. 1981; Genetic mapping of a linked cluster of ribosomal ribonucleic acid genes in Bacillus subtilis. Journal of Bacteriology 148:624–628
    [Google Scholar]
  52. Yoneda Y., Graham S., Young F. E. 1979; Cloning of a foreign gene coding for ot-amylase in Bacillus subtilis. Biochemical and Biophysical Research Communications 91:1556–1564
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1497
Loading
/content/journal/micro/10.1099/00221287-129-5-1497
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error