Catabolic Pathways for Glucose, Glycerol and 6-Phosphogluconate in grown in Armadillo Tissues Free

Abstract

With radioisotopes, it was shown that suspensions of oxidized glycerol, 6-phosphogluconate, glucose, glucose 6-phosphate, and, at a low rate, gluconate, to CO. The incubation period in these experiments was usually 20 h, but after 140 h up to five times more glucose and gluconate had been converted to CO. Studies with differentially labelled glucose indicated that glycolysis and the hexose monophosphate pathway were used for glucose dissimilation.

Key enzymes of glycolysis, the hexose monophosphate pathway and glycerol catabolism were detected in cell-free extracts from purified but phosphoketolase, Entner-Doudoroff pathway activity and gluconate kinase were absent. All these enzymes were present also in host-tissue, but biochemical evidence is presented which indicates that all enzymes detected in extracts from were authentic bacterial enzymes. Additionally, they could all be detected in extracts of prepared by treatment with NaOH in which host enzymes adsorbed to are inactivated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1481
1983-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1481.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1481&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assays of inorganic phosphate, total phosphate, and phosphatases. Methods in Enzymology 8:115–118
    [Google Scholar]
  2. Bai N. J., Pai M. R., Murthy P. S., Venkitasu-Bramanian T. A. 1975a; Fructose-1,6-diphosphate aldolase ofMycobacterium tuberculosis H37Rv. Indian Journal of Biochemistry and Biophysics 12:181–182
    [Google Scholar]
  3. Bai N. J., Pai M. R., Murthy P. S., Venkitasu-Bramanian T. A. 1975b; Pathways of carbohydrate metabolism inMycobacterium tuberculosisH37RV. Canadian Journal of Microbiology 21:1688–1691
    [Google Scholar]
  4. Bai N. J., Pai M. R., Murthy P. S., Venkitasu-Bramanian T. A. 1976; Pathways of glucose catabolism inMycobacterium smegmatis. . Canadian Journal of Microbiology 22:1374–1380
    [Google Scholar]
  5. Bastarrachea F., Anderson D. G., Goldman D. S. 1961; Enzyme systems in mycobacteria. IX. Glycolytic system inMycobacterium tuberculosis. . Journal of Bacteriology 82:94–101
    [Google Scholar]
  6. Beisenhertz G., Boltze H. J., Bucher T., Czok R., Garbade K. H., Meyer-Arendt E., Pfleiderer G. 1953; Diphosphofructose-aldolase, Phosphoglyceraldehyd-dehydrogenase, Milchsaure- dehydrogenase, Glycerophosphat-dehydrogenase und Pyruvatkinase aus Kaninchenmuskulatur in einem Arbeitsgang. Zeitschrift fur Naturforschung 8B:555–577
    [Google Scholar]
  7. Benson A. A. 1957; Sugar phosphates; paper and column chromatography. II. Exchange resin chromatography of sugar phosphates. Methods in Enzymology 3:121–129
    [Google Scholar]
  8. Bergmeyer H. U., Gawehn K., Grassl M. 1974; Enzymes as biochemical reagents. In Metabolic Enzyme Analysis 1, 2nd English edn. pp. 425–522 Edited by Bergmeyer H. U. London & New York: Academic Press;
    [Google Scholar]
  9. Brock D. J. H. 1969; Purification and properties of sheep liver phosphofructokinase. Biochemical Journal 113:235–242
    [Google Scholar]
  10. Brown W. 1970; The selectivity of polyacrylamide gels for sugars. Journal of Chromatography 53:572–575
    [Google Scholar]
  11. Chang P. L., Ballantyne S. R., Davidson R. G. 1979; Detection of arylsulphatase-A activity, after electrophoresis in polyacrylamide gel electrophoresis; problems and solutions. Analytical Biochemistry 97:36–42
    [Google Scholar]
  12. Chedelin V. H. 1961; The acetic acid bacteria. In Metabolic Pathways in Microorganisms. E. R. Squibb Lectures on Chemistry of Microbial Products pp. 129 New York: Wiley;
    [Google Scholar]
  13. Colquhoun D. 1971; Numerical and rank measurements. In Lectures on Biostatistics pp. 137–151 Oxford: Clarendon Press;
    [Google Scholar]
  14. Davis B. J. 1964; Disc electrophoresis. II. Method and application to human serum protein. Annals of the New York Academv of Sciences 121:404–427
    [Google Scholar]
  15. Fahrney D. E., Gold A. M. 1963; Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin and trypsin. Journal of the American Chemical Society 85:997–1000
    [Google Scholar]
  16. Fluharty A. V., Ballou C. E. 1959; D-threose- 2,4-diphosphate inhibition of D-glyceraldehyde-3- phosphate dehydrogenase. Journal of Biological Chemistry 234:2517–2522
    [Google Scholar]
  17. Galante E., Scalaffa P., Lanzari G. A. 1963; Attivita enzymatiche diAcetobacter suboxydans. I. Glucosiodeidrogenasi. Enzymologia 26:23–30
    [Google Scholar]
  18. Goldberg M., Fessenden J. M., Racker E. 1968; Phosphoketolase. Methods in Enzymology 9:515–520
    [Google Scholar]
  19. Grazi E., Cheng T., Horecker B. L. 1962; The formation of a stable aldolase-DHAP complex. Biochemical and Biophysical Research Communications 1:250–253
    [Google Scholar]
  20. Hammes G. G., Kochavi D. 1962; Studies of the enzyme hexokinase. II. Kinetic inhibition by products. Journal of the American Chemical Society 84:2073–2076
    [Google Scholar]
  21. Horecker B. L., Smyrniotis P. Z., Hurwitz J. 1956; The role of xylulose 5-phosphate in the transketolase reaction. Journal of Biological Chemistry 223:1009–1019
    [Google Scholar]
  22. Hunter B. J. 1953; The oxidation of glycerol by mycobacteria. Biochemical Journal 55:320–328
    [Google Scholar]
  23. Kahana S. E., Lowry O. H., Schulz D. S., Passonneau J. V., Crawford E. J. 1960; The kinetics of phosphoglucoisomerase. Journal of Biological Chemistry 235:2178–2184
    [Google Scholar]
  24. Karnovsky M. L., Lazdins J., Drath D., Harper A. 1975; Biochemical characteristics of activated macrophages. Annals of the New York Academy of Sciences 256:266–274
    [Google Scholar]
  25. Kato L., Adapoe C., Ishaque M. 1976; The respiratory metabolism ofMycobacterium lepraemurium. . Canadian Journal of Microbiology 22:1293–1299
    [Google Scholar]
  26. Khanolkar S. R. 1982; Preliminary studies of metabolic activity of purified suspensions ofMycobacterium leprae. . Journal of General Microbiology 128:423–425
    [Google Scholar]
  27. Kirchheimer W. F., Storrs E. E. 1971; Attempts to establish the armadillo(Dasypus novemcinctusLinn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. International Journal of Leprosy 39:693–702
    [Google Scholar]
  28. Kovachevich R., Wood W. A. 1955; Carbohydrate metabolism byPseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. Journal of Biological Chemistry 213:745–756
    [Google Scholar]
  29. Kusunose E., Kusunose M., Ichihara K., Izumi S. 1980; Occurrence of superoxide dismutase inMycobacterium leprae grown in armadillo liver. Journal of General and Applied Microbiology 26:369–372
    [Google Scholar]
  30. Lilius E.-M., Multanen V.-M., Toivonen V. 1979; Quantitative extraction and estimation of intracellular nicotinamide nucleotides ofEscherichia coli. . Analytical Biochemistry 99:22–27
    [Google Scholar]
  31. Ling K. H., Paetkan V., Marcus F., Lardy H. A. 1966; Phosphofructokinase. Methods in Enzymology 9:425–429
    [Google Scholar]
  32. Loring R. S., Levy L. W., Moss L. K., Ploeser J. M. 1956; Periodate oxidation of sugar phosphates in neutral solution. I. D-Ribose 5-phosphate. Journal of the American Chemical Society 78:3724–3727
    [Google Scholar]
  33. Matsuo E., Skinsnes O. K. 1974; Acid mucopolysaccharide metabolism in leprosy. 2. Subcellular localization of hyaluronic acid and β-glucuronidase in leprous infiltrates suggestive of a host-Mycobacterium leprae metabolic relationship. International Journal of Leprosy 42:399–411
    [Google Scholar]
  34. Menzies I. S., Seakins J. W. T. 1969 In Chromatographic and Electrophoretic Techniques I p. 313 Edited by Smith I. New York: Interscience;
    [Google Scholar]
  35. Mori S. H., Kamada I., Matsui S.-I. 1967; Electrophoretic separation of the magnesium-dependent glucose 6-phosphate dehydrogenase in rats. Journal of Histochemistry and Cytochemistry 15:419–420
    [Google Scholar]
  36. Neufeldt I. E., Teinzer A., Weiss L., Wieland O. 1965; Inhibition of glucose-6-phosphate dehydrogenase by long chain acyl-coenzyme A. Biochemical and Biophysical Research Communications 19:43–48
    [Google Scholar]
  37. Nimmo I. A., Atkins G. L. 1979; The statistical analysis of non-normal (real?) data. Trends in Biochemical Science 4:236–239
    [Google Scholar]
  38. O’Barr T. P., Rothlauf M. V. 1970; Metabolism of D-glucose byMycobacterium tuberculosis. . American Review of Respiratory Disease 101:964–966
    [Google Scholar]
  39. Prabhakaran K. 1973; DOPA metabolism byMycobacterium leprae: its implications in culture of the bacillus and chemotherapy of leprosy. Leprosy- Review 44:112–119
    [Google Scholar]
  40. Prabhakaran K., Braganca B. M. 1962; Glutamic acid decarboxylase activity ofMycobacterium leprae and occurrence of a-aminobutyric acid in skin lesions of leprosy. Nature, London 196:589–590
    [Google Scholar]
  41. Ramaiah A., Hathway J. A., Atkinson D. E. 1964; Adenylate as a metabolic regulator. Journal of Biological Chemistry 239:3613–3623
    [Google Scholar]
  42. Ramakrishnan T., Murthy P. S., Gopinathan K. P. 1972; Intermediary metabolism of mycobacteria. Bacteriological Reviews 36:65–108
    [Google Scholar]
  43. Ratledge C. 1976; The physiology of the mycobacteria. Advances in Microbial Physiology 13:115–244
    [Google Scholar]
  44. Report 1979; Problems related to purification ofMycobacterium leprae armadillo tissues and standardization ofMycobacterium leprae preparations. Report on the Enlarged Steering Committee Meeting, Geneva, 7- H February, 1979, WHO Document TDR/IMMLEP
    [Google Scholar]
  45. Roseman S. 1977; The transport of sugars across bacterial membranes. FEBS Symposium 42:582–597
    [Google Scholar]
  46. Rutter W. J. 1964; Evolution of aldolase. Federation Proceedings 23:1248–1257
    [Google Scholar]
  47. Sherman I. W. 1979; Biochemistry ofPlasmodium(malarial parasites). Microbiological Reviews 43:453–495
    [Google Scholar]
  48. Shetty K. T., Antia N. R., Krishnaswamy P. R. 1981; Occurrence of δ-glutamyl transpeptidase activity in several mycobacteria includingMycobacterium leprae. . International Journal of Leprosy 49:49–56
    [Google Scholar]
  49. Szymona O., Kowalska H., Szymona M. 1969; Search for inducible sugar kinases inMycobacterium phlei. . Annals of the University of Marie Curie- Sklodowska, Lubin-Polonia, Sectio D 24:1–12
    [Google Scholar]
  50. Tepper B. S., Varma K. G. 1972; Metabolic activity of purified suspensions ofMycobacterium lepraemurium. . Journal of General Microbiology 73:143–152
    [Google Scholar]
  51. Wheeler P. R. 1982; Metabolism of carbon-sources byMycobacterium leprae. A preliminary report. Annales de Microbiologie 133B:141–146
    [Google Scholar]
  52. Wheeler P. R., Gregory D. 1980; Superoxide dismutase, peroxidatic activity and catalase inMycobacterium leprae purified from armadillo liver. Journal of General Microbiology 121:457–464
    [Google Scholar]
  53. Wheeler P. R., Bharadwaj V. P., Gregory D. 1982; N-Acetyl β-glucosamidase, β-glucuronidase and acid phosphatase inMycobacterium leprae. . Journal of General Microbiology 128:1063–1071
    [Google Scholar]
  54. Wick A. N., Drury D. R., Nakada H. I., Wolfe J. B. 1957; Localization of the primary metabolic block produced by 2-deoxyglucose. Journal of Biological Chemistry 224:963–969
    [Google Scholar]
  55. Winder F. G., Brennan P. J. 1966; Initial steps in the metabolism of glycerol byMycobacterium tuberculosis BCG. Journal of Bacteriology 92:1846–1847
    [Google Scholar]
  56. Wood H. G., Katz J., Landau B. R. 1963; Estimation of pathways of carbohydrate metabolism. Biochemische Zeitschrift 338:809–847
    [Google Scholar]
  57. York J. L., Grollman A. P., Bublitz C. 1961; TPN-L-gulonate dehydrogenase. Biochimica et bio- physica acta 47:298–306
    [Google Scholar]
  58. Yoshida M., Oshima T., Imahori K. 1971; The thermostable allosteric enzyme: phospho- fructokinase from an extreme thermophile. Biochemical and Biophysical Research Communications 43:36–39
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1481
Loading
/content/journal/micro/10.1099/00221287-129-5-1481
Loading

Data & Media loading...

Most cited Most Cited RSS feed