1887

Abstract

Thiobacilli were estimated in samples taken from the Hamburg sewer system at six sites showing different degrees of concrete corrosion. There was a marked enrichment of thiobacilli on the sewer pipe surface above the sewage level in comparison to the liquid phase. The highest number [10 thiobacilli (mg protein)] was found at the site of the greatest corrosion. Ten isolates of the genus were characterized and identified as and Facultative chemolithotrophic bacteria predominated at sites of early corrosion, whereas was most abundant in severely corroded areas. The cell number of could be greatly decreased by aerating the sewage with pure oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1327
1983-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1327.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1327&mimeType=html&fmt=ahah

References

  1. Biczók I. 1968 Belcmkorrosion, Bctonschutz. Wiesbaden, Berlin: Bauverlag;
    [Google Scholar]
  2. Bock E., Heinrich G. 1969; Morphologische und physiologische Untersuchungen an Zellen von Nitrohacter winogradskvi Buch. Archil für Mikrobiologie 69:149–159
    [Google Scholar]
  3. Buchanan R. E., Gibbons N. E. 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn.. Baltimore, Md: Williams & Wilkins;
    [Google Scholar]
  4. Deutsche Einheitsverfahren Zur Wasserunter-Suchung 1966 Weinheim: Verlag Chemie;
  5. Hutchinson M., Johnstone K.E, White D. 1965; The taxonomy of certain thiobacilli. Journal of General Microbiology 41:357–366
    [Google Scholar]
  6. Hutchinson M., Johnstone K.E, White D. 1967; Taxonomy of anaerobic thiobacilli. Journal of General Microbiology 47:17–23
    [Google Scholar]
  7. Hutchinson M., Johnstone K.E. 1969; Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. Journal of General Microbiology 57:397–410
    [Google Scholar]
  8. Jackson J. F., Moriarty D. J. W., Nicholas D. J. D. 1968; Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. Journal of General Microbiology 53:53–60
    [Google Scholar]
  9. Kadota H., Ishida Y. 1972; Production of volatile sulphur compounds by microorganisms. Annual Review of Microbiology 26:127–138
    [Google Scholar]
  10. König W. A., Ludwig K., Sievers S., Rinken M., Stölting K. H., Günther W. 1980; Identification of volatile organic sulphur compounds in municipal sewage systems by GC/MS. Journal of High Resolution Chromatography and Chromatography Communications 3:415–416
    [Google Scholar]
  11. Lea F. M., Desch C. H. 1936 The Chemistry of Cement and Concrete. London: Edward Arnold;
    [Google Scholar]
  12. London J. 1963; Thiobacillus intermedins nov. sp. A novel type of facultative autotroph. Archiv für Mikrobiologie 46:329–337
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of the DNA from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  15. Matin A., Rittenberg S. C. 1971; Enzymes of carbohydrate metabolism in thiobacillus species. Journal of Bacteriology 107:179–186
    [Google Scholar]
  16. Olmstead W. M., Hamlin H. 1900; Converting portions of the Los Angeles outfall sewer into a septic tank. Engineering News 44:317–318
    [Google Scholar]
  17. Parker C. D. 1945; The corrosion of concrete. I. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Australian Journal of Experimental Biology and Medical Science 23:81–90
    [Google Scholar]
  18. Parker C. D. 1947; Species of sulphur bacteria associated with the corrosion of concrete. Nature; London: 159439
    [Google Scholar]
  19. Parker C. D., Jackson D. 1965; The microbial flora of concrete surfaces. In Hydrogen Sulphide Corrosion of Concrete Sewers. Melbourne and Metropolitan Board of Works Technical Paper A.8 part 6 pp. 1–29
    [Google Scholar]
  20. Parker C. D., Prisk J. 1953; The oxidation of inorganic compounds of sulphur by various sulphur bacteria. Journal of General Microbiology 8:344–364
    [Google Scholar]
  21. Schremmer H. 1980; Die Schwefelwasserstoff-Korrosion in Abwasseranlagen. Tiefbau, Ingenieurbau, Strassenbau 22:786–796
    [Google Scholar]
  22. Shively J. M., Decker G. L., Greenawalt J. W. 1970; Comparative ultrastructure of the thiobacilli. Journal of Bacteriology 101:618–627
    [Google Scholar]
  23. Sivelä S., Sundman V. 1975; Demonstration of thiobacillus type bacteria which utilize methyl sulfides. Archives of Microbiology 103:303–304
    [Google Scholar]
  24. Thistlethwayte D. K. B. 1972 Control of Sulfides in Sewerage Systems. Melbourne, Australia: Butterworth;
    [Google Scholar]
  25. Trautwein K. 1921; Beitrag zur Physiologie und Morphologie der Thionsäurebakterien (Ome-lianski). Centralblatt für Bacteriologie und Parasitenkunde, Abt. II 53:513–548
    [Google Scholar]
  26. Trudinger P. A. 1967; Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. Journal of Bacteriology 93:550–559
    [Google Scholar]
  27. Vishniac W. V., Santer M. 1957; The thiobacilli. Bacteriological Reviews 21:195–213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1327
Loading
/content/journal/micro/10.1099/00221287-129-5-1327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error