1887

Abstract

The size and structure of the DNA genome of xenosomes, bacterial endosymbionts of the marine hymenostome ciliate, 110–3, were investigated. Renaturation kinetic measurements, determined optically and by hydroxyapatite chromatography, suggested a genome size of 0·34 × 10 daltons. Sedimentation rate measurements of DNA gently released from the symbionts yielded molecules of comparable size. The analytical complexity, determined chemically, was 3·03 × 10 daltons. Consistent with these and other data is a model for the structure of the symbiont genome in which the DNA exists in the form of nine circularly permuted, double-stranded DNA molecules of unique sequence, each of molecular weight 0·34 × 10. It is suggested that xenosomes and certain symbionts found in ciliated protozoa may be extant forms of once free-living bacteria that have adapted to the intracellular environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1317
1983-05-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1317.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1317&mimeType=html&fmt=ahah

References

  1. Bak A. L., Black F. T., Christiansen C., Freundt F. A. 1969; Genome size of mycoplasmal DNA. Nature, London 224:1209–1210
    [Google Scholar]
  2. Bak A. L., Christiansen C., Stenderup A. 1970; Bacterial genome sizes determined by DNA renaturation studies. Journal of General Microbiology 64:377–380
    [Google Scholar]
  3. Bendich A. 1957; Methods for characterization of nucleic acids by base composition. Methods in Enzymology 3:715–723
    [Google Scholar]
  4. Bode H. R., Morowitz H. J. 1967; Size and structure of Mycoplasma hominis H39 chromosome. Journal of Molecular Biology 23:191–199
    [Google Scholar]
  5. Britten R. J., Kohne D. E. 1965; Nucleotide sequence repetition in DNA. Year Book, Carnegie Institute Washington 65:78–125
    [Google Scholar]
  6. Burgi E., Hershey A. D. 1963; Sedimentation rate as a measure of molecular weight of DNA. Biophysical Journal 3:309–321
    [Google Scholar]
  7. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  8. Cairns J. 1963; The chromosome of Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 28:43–45
    [Google Scholar]
  9. Gibson 1., Chance M., Williams J. 1971; Extranuclear DNA and the endosymbionts of Paramecium aurelia. Nature, New Biology 234:75–77
    [Google Scholar]
  10. Gillham N. W. 1978 Organelle Heredity. New York: Raven Press;
    [Google Scholar]
  11. Hershey A. D., Burgi E., Ingraham L. 1963; Cohesion of DNA molecules isolated from phage Lambda. Proceedings of the National Academy of Sciences of the United States of America 49:748–755
    [Google Scholar]
  12. Johanson R. 1953; New specific reagent for ketosugars. Nature, London 172:956–957
    [Google Scholar]
  13. Kavenhoff R. 1972; Characterization of the Bacillus subtilis W23 genome by sedimentation. Journal of Molecular Biology 72:801–806
    [Google Scholar]
  14. Kleinschmidt A. K., Lang D., Jackerts D. 1962; Preparation and length measurements of the total deoxyribonucleic acid content of T2 bacteriophages. Biochimica et biophysica acta 61:857–864
    [Google Scholar]
  15. Leighton S. B., Rubenstein I. 1969; Calibration of molecular weight scales for DNA. Journal of Molecular Biology 46:313–328
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  17. Martin R. G., Ames B. N. 1961; A method for determining the sedimentation behavior of enzymes: application to protein mixtures. Journal of Biological Chemistry 236:1372–1379
    [Google Scholar]
  18. Ogur M., Rosen G. 1950; The nucleic acids in plant tissues. 1. The extraction and estimation of deoxypentose nucleic acid and pentose nucleic acid. Archives of Biochemistry 2:62–76
    [Google Scholar]
  19. Prasad A. S., Dumouschelle E., Koniuch D., Oberlas D. 1972; A simple fluorometric method for the determination of RNA and DNA in tissues. Journal of Laboratory and Clinical Medicine 80:598–602
    [Google Scholar]
  20. Preer J. R., Preer L. B., Jurand A. 1974; Kappa and other endosymbionts in Paramecium aurelia. Bacteriological Reviews 38:113–163
    [Google Scholar]
  21. Sadoff H., Schimel B., Ellis S. 1979; Characterization of Azotobactervinelandii deoxyribonucleic acid and folded chromosomes. Journal of Bacteriology 138:871–877
    [Google Scholar]
  22. Schmidt H. J., Heckmann K. 1980; DNA of omikron. In Procedures of the International Colloquium on Endosymbiosis and Cell Research at Tubingen. pp. 108–112 Edited by Schwemmler W., Schenk H. New York: de Gruyter;
    [Google Scholar]
  23. Schwemmler W., Hobom G., Engel-mitani M. 1975; Isolation and characterization of leafhopper endosymbiont DNA. Cytobiologie 10:249–259
    [Google Scholar]
  24. Soldo A. T. 1974; Intracellular particles in Paramecium. In Paramecium. A Current Survey pp. 377–442 Edited by Wagtendonk W. J. Amsterdam, London, New York: Elsevier;
    [Google Scholar]
  25. Soldo A. T., Brickson S. A. 1978; Observations on the ultrastructure, mode of infectivity and host range of xenosomes. Tissue and Cell 10:609–618
    [Google Scholar]
  26. Soldo A. T., Godoy G. A. 1972; The kinetic complexity of Paramecium macronuclear deoxyribonucleic acid. Journal of Protozoology 19:673–678
    [Google Scholar]
  27. Soldo A. T., Godoy G. A. 1973; Molecular complexity of ParameciumsymbiontLambda deoxyribonucleic acid: evidence for the presence of a multicopy genome. Journal of Molecular Biology 73:93–108
    [Google Scholar]
  28. Soldo A. T., Godoy G. A. 1974; The molecular complexity of mu and pi symbiont DNA of Paramecium aurelia. Nucleic Acids Research 1:387–396
    [Google Scholar]
  29. Soldo A. T., Merlin E. J. 1972; The cultivation of symbiont-free marine ciliates in axenic medium. Journal of Protozoology 19:519–524
    [Google Scholar]
  30. Soldo A. T., Godoy G. A., Brickson S. A. 1974; Infectious particles in a marine ciliate. Nature, London 249:284–286
    [Google Scholar]
  31. Soldo A. T., Godoy G. A., Larin F. 1978; Purine-excreting nature of refractile bodies in the marine ciliate Parauronemaacutum. Journal of Protozoology 25:416–418
    [Google Scholar]
  32. Spencer R., Cross G. A. M. 1975; Purification and properties of nucleic acids from an unusual cytoplasmic organelle in the flagellate Crithidia oncopelti. Biochimica et biophysica acta 390:141–154
    [Google Scholar]
  33. Studier F. W. 1965; Sedimentation studies of the size and shape of DNA. Journal of Molecular Biology 11:373–390
    [Google Scholar]
  34. Tuan R. S., Chang K-P. 1975; Isolation of intracellular symbionts by immune lysis of flagellate protozoa and characterization of their DNA. Journal of Cell Biology 65:309–323
    [Google Scholar]
  35. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. Journal of Molecular Biology 31:349–370
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1317
Loading
/content/journal/micro/10.1099/00221287-129-5-1317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error