1887

Abstract

The function(s) of the peptide antibiotic, gramicidin S, in its producer, Nagano, was investigated. Particular attention was paid to the possible role of gramicidin S in sporulation and spore properties. Sporulation was similar in both the gramicidin S-producing parental strain and a gramicidin S-negative mutant of this strain. Mature parental and mutant spores were equally resistant to UV irradiation, solvents (reported previously) and heat. Thus, the lack of gramicidin S synthesis impairs none of these properties. Contrary to results reported by others, we also found no difference in heat resistance between spores of ATCC 8185 and its linear gramicidin-negative mutant, Ml.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1309
1983-05-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1309.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1309&mimeType=html&fmt=ahah

References

  1. Balassa G. 1971; The genetic control of spore formation in bacilli. Current Topics in Microbiology and Immunology 56:99–192
    [Google Scholar]
  2. Demain A. L. 1958; Minimal medium for quantitative studies withBacillus subtilis. Journal of Bacteriology 75:517–522
    [Google Scholar]
  3. Demain A. L., Piret J. M. 1979; Relationship between antibiotic biosynthesis and sporulation. In Regulation of Secondary Product and Plant Hormone Metabolism pp. 183–188 Edited by Luckner M., Schreiber K. Oxford: Pergamon Press;
    [Google Scholar]
  4. Demain A. L., Piret J. M. 1981; Why secondary metabolism?. In Microbiology-1981 pp. 363–366 Edited by Schlessinger D. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  5. Demain A. L., Piret J. M., Friebel T. E., Vandamme E. J., Matteo C. C. 1976; Studies onBacillus brevis directed toward the cell-free synthesis of gramicidin S. In Microbiology-1976 pp. 437–443 Edited by Schlessinger D. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  6. Freese E. 1981; Initiation of bacterial sporulation. In Sporulation and Germination pp. 1–12 Edited by Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, D C.: American Society for Microbiology;
    [Google Scholar]
  7. Haavik H. I., Thomassen S. 1973; A bacitracinnegative mutant ofBacillus licheniformis which is able to sporulate. Journal of General Microbiology 76:451–454
    [Google Scholar]
  8. Iwaki M., Shimura K., Kanda M., Kaji E., Saito Y. 1972; Some mutants ofBacillus brevisdeficient in gramicidin S formation. Biochemical and Biophysical Research Communications 48:113–118
    [Google Scholar]
  9. Kambe M., Imae Y., Kurahashi K. 1974; Biochemical studies on gramicidin S non-producing mutants ofBacillus brevis ATCC 9999. Journal of Biochemistry 75:481–493
    [Google Scholar]
  10. Katz E., Demain A. L. 1977; The peptide antibiotics of Bacillus chemistry, biogenesis and possible functions. Bacteriological Reviews 41:449–474
    [Google Scholar]
  11. Kooiman W. J., Geers J. M. 1975; Simple and accurate technique for the determination of heat resistance of bacterial spores. Journal of Applied Bacteriology 38:185–189
    [Google Scholar]
  12. Lazaridis I., Frangou-Lazaridis M., Maccuish F. C., Nandi S., Seddon B. 1980; Gramicidin S content and germination and outgrowth ofBacillus brevis spores. FEMS Microbiology Letters 7:229–232
    [Google Scholar]
  13. Lipmann F. 1973; Nonribosomal polypeptide synthesis on polyenzyme templates. Accounts of Chemical Research 6:361–367
    [Google Scholar]
  14. Losick R. 1981; Sigma factors, stage 0 genes, and sporulation. In Sporulation and Germination pp. 48–56 Edited by Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, D. C.: American Society for Microbiology;
    [Google Scholar]
  15. Mandelstam J. 1976; Bacterial sporulation: a problem in the biochemistry and genetics of a primitive developmental system. Proceedings of the Royal Society B193:89–106
    [Google Scholar]
  16. Marahiel M., Danders W., Krause M., Klein-Kauf H. 1979; Biological role of gramicidin S in spore functions. Studies on gramicidin S-negative mutants ofBacillus brevis ATCC 9999. European Journal of Biochemistry 99:49–55
    [Google Scholar]
  17. Matteo C. C., Glade M., Tanaka A., Piret J., Demain A. L. 1975; Microbiological studies on the formation of gramicidin S synthetases. Biotechnology and Bioengineering 17:129–142
    [Google Scholar]
  18. Mitronova T. N., Zharikova G. G. 1965; A method for obtaining spores from the four forms ofBacillus brevis var. G.B. Mikrobiologiya 34:835–839
    [Google Scholar]
  19. Mukherjee P. K., Paulus H. 1977; Biological function of gramicidin. Studies on gramicidinnegative mutants. Proceedings of the National Academy of Sciences of the United States of America 74:780–784
    [Google Scholar]
  20. Mukherjee P. K., Paulus H. 1978; Regulation of bacterial sporulation by peptide antibiotics. In Spores VII pp. 226–231 Edited by Chambliss G., Vary J. C. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  21. Nandi S., Seddon B. 1978; Evidence for gramicidin S functioning as a bacterial hormone specifically regulating spore outgrowth inBacillus brevis strain Nagano. Biochemical Society Transactions 6:409–411
    [Google Scholar]
  22. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  23. Piret J. M., Demain A. L. 1981; Role of gramicidin S in the producer organismBacillus brevis. In Sporulation and Germination pp. 243–245 Edited by Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, D. C.: American Society for Microbiology;
    [Google Scholar]
  24. Ray B., Bose S. K. 1971; Polypeptide antibiotics- negative spore former mutants ofBacillus subtilis. Journal of General and Applied Microbiology 17:491–498
    [Google Scholar]
  25. Ristow H. 1977; The peptide antibiotic gramicidin D. A specific reactivator of tyrocidine-inhibited transcription. Biochimicaet biophysica acta 477:177–184
    [Google Scholar]
  26. Ristow H., Schazschneider B., Bauer K., Kleinkauf H. 1975a; Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation?. Biochimica et biophysica acta 390:246–250
    [Google Scholar]
  27. Ristow H., Schazschneider B., Kleinkauf H. 1975b; Effects of the peptide antibiotics tyrocidine and the linear gramicidin on RNA synthesis and sporulation ofBacillus brevis. Biochemical and Biophysical Research Communications 63:1085–1092
    [Google Scholar]
  28. Ryter A. 1965; Etude morphologique de la sporulation deBacillus subtilis. Annales de l’Institut Pasteur 108:40–60
    [Google Scholar]
  29. Sadoff H. L. 1972; Sporulation antibiotics ofBacillus species. In Spores V pp. 157–166 Edited by Halvorson H. O., Hansen R., Campbell L. L. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  30. Sarkar N., Paulus H. 1972; Function of peptide antibiotics in sporulation. Nature New Biology 239:228–230
    [Google Scholar]
  31. Sarkar N., Langley D., Paulus H. 1977; Biological function of gramicidin. Selective inhibition of RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 74:1478–1482
    [Google Scholar]
  32. Sarkar N., Langley D., Paulus H. 1979; Studies on the mechanism and specificity of inhibition of ribonucleic acid polymerase by linear gramicidin. Biochemistry 18:4536–4541
    [Google Scholar]
  33. Schaeffer P. 1969; Sporulation and the production of antibiotics, exoenzymes and exotoxins. Bacteriological Reviews 33:48–71
    [Google Scholar]
  34. Schaeffer P., Millet J., Aubert J.-P. 1965; Catabolite repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54:704–711
    [Google Scholar]
  35. Schazschneider B., Ristow H., Kleinkauf H. 1974; Interaction between the antibiotic tyrocidine and DNAin vitro. Nature, London 249:757–759
    [Google Scholar]
  36. Shimura K., Iwaki M., Kanda M., Hori K., Kaji E., Hasegawa S., Saito Y. 1974; On the enzyme system obtained from some mutants ofBacillus brevisdeficient in gramicidin S formation. Biochimica et biophysica acta 338:577–587
    [Google Scholar]
  37. Wagman G. H., Weinstein M. J. 1973 Chromatography of Antibiotics New York: Elsevier;
    [Google Scholar]
  38. Weinberg E. D. 1971; Secondary metabolism: raison d’etre. Perspectives in Biology and Medicine 14:565–577
    [Google Scholar]
  39. Woodruff H. B. 1966; The physiology of antibiotic production: the role of the producing organism. Symposia of the Society for General Microbiology 16:22–46
    [Google Scholar]
  40. Yukioka M., Saito Y., Otani S. 1966; Enzymatic hydrolysis of gramicidin S. Journal of Biochemistry 60:295–302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1309
Loading
/content/journal/micro/10.1099/00221287-129-5-1309
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error