1887

Abstract

A succinate dehydrogenase-negative mutant of is described which lacks all three subunits of the membrane-bound succinate dehydrogenase complex: flavoprotein, iron protein, and cytochrome . The corresponding mutation is revertible and it maps at one extreme of the region. The results presented suggest that the structural genes for the subunits of the succinate dehydrogenase complex are part of one operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-4-917
1983-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/4/mic-129-4-917.html?itemId=/content/journal/micro/10.1099/00221287-129-4-917&mimeType=html&fmt=ahah

References

  1. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. Molecular and General Genetics 123:185–198
    [Google Scholar]
  2. Carls R. A., Hanson R. S. 1971; Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. Journal of Bacteriology 106:848–855
    [Google Scholar]
  3. Downie J. A., Gibson F., Cox G. B. 1979; Membrane adenosine triphosphatases of prokaryotic cells. Annual Review of Biochemistry 48:103–131
    [Google Scholar]
  4. Ells H. A. 1959; A colorimetric method for the assay of soluble succinic dehydrogenase and pyridinenucleotide-linked dehydrogenases. Archives of Biochemistry and Biophysics 85:561–562
    [Google Scholar]
  5. Gunsalus R. P., Brusilow W. S. A., Simoni R. D. 1982; Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 79:320–324
    [Google Scholar]
  6. Hanson R. S., Cox D. P. 1967; Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. Journal of Bacteriology 93:1777–1787
    [Google Scholar]
  7. Hederstedt L. 1980; Cytochrome b reducible by succinate in an isolated succinate dehydrogenase- cytochrome b complex from Bacillus subtilis membranes. Journal of Bacteriology 144:933–940
    [Google Scholar]
  8. Hederstedt L., Rutberg L. 1980; Biosynthesis and membrane binding of succinate dehydrogenase in Bacillus subtilis. Journal of Bacteriology 144:941–951
    [Google Scholar]
  9. Hederstedt L., Rutberg L. 1981; Succinate dehydrogenase - a comparative review. Microbiological Reviews 45:542–555
    [Google Scholar]
  10. Hederstedt L., Holmgren E., Rutberg L. 1979; Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the nonionic detergent Triton X-100. Journal of Bacteriology 138:370–376
    [Google Scholar]
  11. Hederstedt L., Magnusson K., Rutberg L. 1982; Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion. Journal of Bacteriology 152:157–165
    [Google Scholar]
  12. Henner D. J., Hoch J. A. 1980; The Bacillus subtilischromosome. Microbiological Reviews 44:57–82
    [Google Scholar]
  13. Holmgren E., Hederstedt L., Rutberg L. 1979; Role of heme in synthesis and membrane binding of succinic dehydrogenase in Bacillus subtilis. Journal of Bacteriology 138:377–382
    [Google Scholar]
  14. Ito J., Spizizen J. 1971; Increased rate of asporogenous mutations following treatment of Bacillus subtilis spores with ethyl methanesulfonate. Mutation Research 13:93–96
    [Google Scholar]
  15. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. Journal of Bacteriology 119:431–442
    [Google Scholar]
  16. Lindgren V., Rutberg L. 1976; Genetic control of the glp system in Bacillus subtilis. Journal of Bacteriology 127:1047–1057
    [Google Scholar]
  17. Lipsky R. H., Rosenthal R., Zahler S. A. 1981; Defective specialized SPβ transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. Journal of Bacteriology 148:1012–1015
    [Google Scholar]
  18. Mackey C. J., Zahler S. A. 1982; Insertion of bacteriophage SPβ into the citF gene of Bacillus subtilis and specialized transduction of the ilvBC-leugenes. Journal of Bacteriology 151:1222–1229
    [Google Scholar]
  19. Mattioli R., Bazzicalupo M., Federici G., Gallori E., Polsinelli M. 1979; Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine. Journal of Genera! Microbiology 114:223–225
    [Google Scholar]
  20. OhnÉ M. 1975; Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. Journal of Bacteriology 122:224–234
    [Google Scholar]
  21. Ohné M., Rutberg B., Hoch J. A. 1973; Genetic and biochemical characterization of mutants of Bacillus subtilis defective in succinate dehydrogenase. Journal of Bacteriology 115:738–745
    [Google Scholar]
  22. Owen P. 1981; Immunology of the bacterial membrane. In Organization of Prokaryotic Cell Membranes 1 pp. 73–164 Ghosh B. K. Edited by Boca Raton, Florida:: CRC Press.;
    [Google Scholar]
  23. Rhoads D. B., Laimins L., Epstein W. 1978; Functional organization of the kdp genes of Escherichia coli K-12. Journal of Bacteriology 135:445–452
    [Google Scholar]
  24. Ruiz-Herrera J., Garcia L. G. 1972; Regulation of succinate dehydrogenase in Escherichia coli. Journal of General Microbiology 72:29–35
    [Google Scholar]
  25. Rutberg B., Hederstedt L., Holmgren E., Rutberg L. 1978; Characterization of succinic dehydrogenase mutants of Bacillus subtilis by crossed immunoelectrophoresis. Journal of Bacteriology 136:304–311
    [Google Scholar]
  26. Smith I. 1982; The translational apparatus of Bacillus subtilis. In The Molecular Biology of the Bacilli 1 pp. 111–145 Dubnau D. A. Edited by New York:: Academic Press.;
    [Google Scholar]
  27. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  28. Takahashi Y. 1975; Effect of glucose and cyclic adenosine 3′,5′-monophosphate on the synthesis of succinate dehydrogenase and isocitratelyase in Escherichia coli. Journal of Biochemistry 78:1097–1100
    [Google Scholar]
  29. Walker J. E., Saraste M., Gay N. J. 1982; E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature; London: 298867–869
    [Google Scholar]
  30. Wieczorek L., Altendorf K. 1979; Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5′-triphosphatase. FEBS Letters 98:233–236
    [Google Scholar]
  31. Yasunaka K., Tsukamoto H., Okubo S., Horiuchi T. 1970; Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SP02. Journal of Virology 5:819–821
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-4-917
Loading
/content/journal/micro/10.1099/00221287-129-4-917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error