1887

Abstract

The widely studied chloramphenicol resistance (Cm) transposon Tn9 came from phage P1Cm0. This phage, however, had acquired its Cm marker from the R plasmid pSM14. The analysis of the physical structure of pSM14 has now revealed that this plasmid already carried Tn9 and also the tetracycline resistance transposon Tn10. Physical and functional studies indicated that Tn9 of pSM14, although capable of transposition, probably translocated to the P1 genome by reciprocal recombination processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-4-1217
1983-04-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/4/mic-129-4-1217.html?itemId=/content/journal/micro/10.1099/00221287-129-4-1217&mimeType=html&fmt=ahah

References

  1. Alton N. K., Vapnek D. 1979; Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature, London 282:864–869
    [Google Scholar]
  2. Arber W., Iida S., Jütte H., Caspers P., Meyer J., Hänni C. 1978; Rearrangements of genetic material inEscherichia coli as observed on the bacteriophage P1 plasmid. Cold Spring Harbor Symposia on Quantitative Biology 43:1197–1208
    [Google Scholar]
  3. Arber W., Hümbelin M., Caspers P., Reif H. J., Iida S., Meyer J. 1980; Spontaneous mutations in theEscherichia coli prophage P1 and IS-mediated processes. Cold Spring Harbor Symposia on Quantitative Biology 45:38–40
    [Google Scholar]
  4. Bachmann B. J., Low K. B. 1980; Linkage map ofEscherichia coli K-12, Edition 6. Microbiological Reviews 44:1–56
    [Google Scholar]
  5. Bukhari A. I., Froshauer S. 1978; Insertion of a transposon for chloramphenicol resistance into bacteriophage Mu. Gene 3:303–314
    [Google Scholar]
  6. Campbell A., Berg D., Botstein D., Lederberg E., Novick P., Starlinger P., Szybalski W. 1977; Nomenclature of transposable elements in prokaryotes. In DNA Insertion Elements, Plasmids, and EP1somes pp. 15–22 Edited by Bukhari A. I., , Shapiro J. A., Adhya S. L. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. De Bruijn F. J., Bukhari A. I. 1978; Analysis of transposable elements inserted in the genomes of bacteriophages Mu and PL. Gene 3:315–331
    [Google Scholar]
  8. Egawa R., Hirota Y. 1962; Inhibition of fertility by multiple drug resistance (R) factor inEscherichia coli K12. Japanese Journal of Genetics 37:66–69
    [Google Scholar]
  9. Galas D. J., Calos M. P., Miller J. H. 1980; Sequence analysis of Tn9 insertions in thelacZ gene. Journal of Molecular Biology 144:19–41
    [Google Scholar]
  10. Ghosal D., Sommer H., Saedler H. 1979; Nucleotide sequence of the transposable DNA element IS2. Nucleic Acids Research 6:1111–1122
    [Google Scholar]
  11. Gottesman M. M., Rosner J. L. 1975; Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proceedings of the National Academy of Sciences of the United States of America 72:5041–5045
    [Google Scholar]
  12. Hänni C., Meyer J., Iida S., Arber W. 1982; Occurrence and properties of the composite transposon Tn2672: Evolution of multiple drug resistance transposons. Journal of Bacteriology 150:1266–1273
    [Google Scholar]
  13. Hirsch H. J., Starlinger P., Brachet P. 1972; Two kinds of insertions in bacterial genes. Molecular and General Genetics 119:191–206
    [Google Scholar]
  14. Hu S., Ohtsubo E., Davidson N., Saedler H. 1975; Electron microscope heteroduplex studies of sequence relations among bacterial plasmids: identification and mapping of the insertion sequences IS1 and IS2 in F and R plasmids. Journal of Bacteriology 122:764–775
    [Google Scholar]
  15. Iida S.;. 1980; A cointegrate of the bacteriophage PI genoipe and the conjugative R plasmid R 100. Plasmid 3:278–290
    [Google Scholar]
  16. Iida S., Arber W. 1977; Plaque forming specialized transducing phage PI: isolation of PICmSmSu, a precursor of P1 Cm. Molecular and General Genetics 153:259–269
    [Google Scholar]
  17. Iida S., Arber W. 1979; Multiple physical difference in the genome structure of functionally related bacteriophages PI and P7. Molecular and General Genetics 173:249–261
    [Google Scholar]
  18. Iida S., Arber W. 1980; On the role of IS1 in the formation of hybrids between the bacteriophage PI and the R plasmid NR1. Molecular and General Genetics 111:261–270
    [Google Scholar]
  19. Iida S., Meyer J., Arber W. 1978; The insertion element IS1 is a natural constituent of coliphage PI DNA. Plasmid 1:357–365
    [Google Scholar]
  20. Iida S., Meyer J., Arber W. 1980; Genesis and natural history of IS-mediated transposons. Cold Spring Harbor Symposia on Quantitative Biology 45:27–43
    [Google Scholar]
  21. Iida S., Hänni C., Echarti C., Arber W. 1981a; Is the IS 1-flanked r-determinant of the R plasmid NR1 a transposon?. Journal of General Microbiology 126:413–425
    [Google Scholar]
  22. Iida S., Marcoli R., Bickle T. A. 1981b; Variant insertion element IS1 generates 8-base pair duplications of the target sequence. Nature, London 294:374–376
    [Google Scholar]
  23. Iida S., Meyer J., Arber W. 1981c; Cointegrates between bacteriophage PI DNA and plasmid pBR322 derivatives suggest molecular mechanisms for PI-mediated transduction of small plasmids. Molecular and General Genetics 184:1–10
    [Google Scholar]
  24. Iida S., Schrickel S., Arber W. 1982; On the segregation of ISI-mediated cointegrates between bacteriophage PI DNA and plasmid pBR322 derivatives. FEMS Microbiology Letters 15:269–273
    [Google Scholar]
  25. Johnsrud L., Calos M. P., Miller J. H. 1978; The transposon Tn9 generates a 9 bp repeated sequence during integration. Cell 15:1209–1219
    [Google Scholar]
  26. Jorgensen R. A., Berg D. E., Allet B., Reznikoff W. S. 1979; Restriction enzyme cleavage map of Tn10, a transposon which encodes tetracycline resistance. Journal of Bacteriology 137:681–685
    [Google Scholar]
  27. Kondo E., Mitsuhashi S. 1964; Drug resistance of enteric bacteria. IV. Active transducing bacteriophage PI CM produced by the combination of R factor with bacteriophage P1. Journal of Bacteriology 88:1266–1276
    [Google Scholar]
  28. Kondo E., Harada K., Mitsuhashi S. 1962; Drug resistance of enteric bacteria, 12. Transduction of the transmissible drug resistance factor by bacteriophage Pike. Japanese Journal of Experimental Medicine 32:139–147
    [Google Scholar]
  29. Lane D., Chandler M. 1977; Mapping of the drug resistance genes carried by the r-determinant of the R 100-1 plasmid. Molecular and General Genetics 157:17–23
    [Google Scholar]
  30. Machattie L. A., Jackowski J. B. 1977; Physical structure and deletion effects of the chloramphenicol resistant element Tn9 in phage lambda. In DNA Insertion Elements, Plasmids and Episomes pp. 219–228 Edited by Bukhari A. I., , Shapiro J. A., Adhya S. L. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Marcoli R., Iida S., Bickle T. A. 1980; The DNA sequence of an IS 1-flanked transposon coding for resistance to chloramphenicol and fusidic acid. FEBS Letters 110:11–14
    [Google Scholar]
  32. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America 74:560–564
    [Google Scholar]
  33. Meyer J., Iida S., Arber W. 1980; Does the insertion element IS1 transpose preferentially into A + T-rich DNA segments?. Molecular and General Genetics 178:471–473
    [Google Scholar]
  34. Meynell E., Datta N. 1967; Mutant drugresistant factors of high transmissibility. Nature, London 214:885–887
    [Google Scholar]
  35. Miki T., Easton M., Rownd R. 1978; Mapping of the resistance genes of the R plasmid NR1. Molecular and General Genetics 158:217–224
    [Google Scholar]
  36. Novick R. P., Clowes R. C., Cohen S. N., Curtiss R.III Datta N., Falkow S. 1976; Uniform nomenclature for bacterial plasmids: a proposal. Bacteriological Reviews 40:168–189
    [Google Scholar]
  37. Ohtsubo H., Ohtsubo E. 1977; Repeated DNA sequences in plasmids, phages and bacterial chromosomes. In DNA Insertion Elements, Plasmids, and Episomes pp. 49–64 Edited by Bukhari A. I., , Shapiro J. A., Adhya S. L. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Ohtsubo H., Ohtsubo E. 1978; Nucleotide sequence of an insertion element, 1ST. Proceedings of the National Academy of Sciences of the United States of America 75:615–619
    [Google Scholar]
  39. Rownd R., Nakaya R., Nakamura A. 1966; Molecular nature of the drug-resistance factors of the Enterobacteriaceae. Journal of Molecular Biology 17:376–393
    [Google Scholar]
  40. Scott J. R. 1968; Genetic studies on bacteriophage P1. Virology 36:564–574
    [Google Scholar]
  41. Shaw W. V., Pachman L. C., Burleigh B. D., Dell A., Morris H. R., Hartley B. S. 1979; Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Nature, London 282:870–872
    [Google Scholar]
  42. Soberon X., Covarrubias L., Bolivar F. 1980; Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene 9:287–305
    [Google Scholar]
  43. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  44. Timmis K. N., Cabello F., Cohen S. N. 1978; Cloning and characterization ofEcoRA andHin restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. Molecular and General Genetics 162:121–137
    [Google Scholar]
  45. Völker T., Iida S., Bickle T. A. 1982; A single gene coding for resistance to both fusidic acid and chloramphenicol. Journal of Molecular Biology 154:417–425
    [Google Scholar]
  46. Wood W. B. 1966; Host specificity of DNA produced byEscherichia coli: bacterial mutations affecting the restriction and modification of DNA. Journal of Molecular Biology 16:118–133
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-4-1217
Loading
/content/journal/micro/10.1099/00221287-129-4-1217
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error