1887

Abstract

Microbial sulphate reduction was examined in thermal waters, sediments and decomposing algal-bacterial mats associated with volcanic activity in Yellowstone National Park. radioactive tracer studies which demonstrated biological [S]sulphkie production from [S]sulphate at temperatures higher than 50 C but less than 85 C, correlated with the presence of a unique sulphate-reducing bacterium. This new species proliferated at temperatures above 45 C but below 85 C, and had an optimum growth temperature of 70 C. The organism was a small Gram-negative, straight rod which displayed an outer-wall membranous layer in thin sections. This obligate anaerobe utilized pyruvate, lactate or H as electron donors and sulphate or thiosulphate as electron acceptors for growth and sulphide formation. Pyruvate alone was fermented during growth to hydrogen, acetic acid and CO. Cell extracts contained cytochrome but lacked a desulphoviridin-type bisulphite reductase. The DNA guanosine plus cytosine content was 34.4 1.0 mol%. Other unusual biochemical features of this extreme thermophile are discussed. Strain YSRA-1 is described as the type strain of the new genus and species

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-4-1159
1983-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/4/mic-129-4-1159.html?itemId=/content/journal/micro/10.1099/00221287-129-4-1159&mimeType=html&fmt=ahah

References

  1. Badziong W., Thauer R. K., Zeikus J. G. 1978; Isolation and characterization ofDesulfovibrio growing on hydrogen plus sulphate as the sole energy source. Archives of Microbiology 116:41–44
    [Google Scholar]
  2. Bergmeyer H. U. 1965 Methods of Enzymatic Analysis Weinheim, F.R.G.: Verlag Chemie;
    [Google Scholar]
  3. Brandis A., Thauer R. K. 1981; Growth ofDesulfovibrio species on hydrogen and sulphate as sole energy source. Journal of General Microbiology 126:249–252
    [Google Scholar]
  4. Brock T. D. 1978; Thermophilic microorganisms and life at high temperatures. New York: Springer Verlag;
    [Google Scholar]
  5. Caldwell D. F., Tiedje J. M. 1975; The structure of anaerobic bacterial communities in the hypolim- nia of several Michigan Lakes. Canadian Journal of Microbiology 21:377–385
    [Google Scholar]
  6. Deley J. 1970; Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. Journal of Bacteriology 101:738–754
    [Google Scholar]
  7. Doemel W. N., Brock T. D. 1977; Structure, growth and decomposition of laminated algal bacterial mats in alkaline hot springs. Applied and Environmental Microbiology 34:433–452
    [Google Scholar]
  8. Hatchikian E. C., Chaigneau M., Legall J. 1976; Analysis of gas production by growing cultures of three species of sulphate-reducing bacteria. In Microbial Production and Utilization of Gases pp. 109–118 Edited by Schlegel H. G., Pfennig N., Gottschalk G. Gottingen: E. Goltz;
    [Google Scholar]
  9. Hollaus F., Sleytr A. 1972; On the taxonomy and fine structure of some hyperthermophilic saccharolytic Clostridia. Archives of Microbiology 86:129–146
    [Google Scholar]
  10. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods in Microbiology 3B:117–132
    [Google Scholar]
  11. Ingvorsen K., Zeikus J. G., Brock T. D. 1981; Dynamics of bacterial sulphate reduction in a eutrophic lake. Applied and Environmental Microbiology 42:1029–1036
    [Google Scholar]
  12. Ljungdahl L. G. 1979; Physiology of thermophilic bacteria. Advances in Microbial Physiology 19:149–243
    [Google Scholar]
  13. Ljungdahl L. G., Bryant F., Carreia L., Saeki T., Wiegel J. 1981; Some aspects of thermophilic and extreme anaerobic microorganisms. In Trends in the Biology of Fermentations for Fuels and Chemicals pp. 397–420 Edited by Hollaender A. New York: Plenum Press;
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–215
    [Google Scholar]
  15. Nelson D. R., Zeikus J. G. 1974; Rapid method on the radioisotopic analysis of gaseous end products of anaerobic metabolism. Applied Microbiology 28:258–261
    [Google Scholar]
  16. Odom J. M., Peck H. D. 1981; Hydrogen cycling as a general mechanism for energy coupling in the sulphate reducing bacteriaDesulfovibrio sp. FEMS Microbiology letters 12:47–50
    [Google Scholar]
  17. Pfennig N., Widdel F. 1981; Ecology and physiology of some anaerobic bacteria from the microbial sulphur cycle. In Biology of Inorganic Nitrogen and Sulphur pp. 169–177 Edited by Bothe H., Trebst A. Berlin: Springer Verlag;
    [Google Scholar]
  18. Postgate J. R. 1969; Media for sulphur bacteria: some amendments. Laboratory Practice 18:286–294
    [Google Scholar]
  19. Postgate J. R. 1979 The Sulphate Reducing Bacteria Cambridge: University Press;
    [Google Scholar]
  20. Rozanova E. P., Khudyakova A. I. 1974; A new nonsporing thermophilic sulphate-reducing organism,Desulfovibrio thermophilus nov. sp. Microbiology 43:908–912
    [Google Scholar]
  21. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov. a new thermophile that produces elemental sulphur from thiosulphate. Journal of General Microbiology 129:1149–1158
    [Google Scholar]
  22. Tabatabai M. A. 1974; Determination of sulphate in water samples. Sulfur Institute Journal 10:11–13
    [Google Scholar]
  23. Thauer R. K., Badziong W. 1981; Respiration with sulphate as electron acceptor. In Diversity of Bacterial Respiratory Systems pp. 188–198 Edited by Knowles C. J. West Palm Beach: CRC Press;
    [Google Scholar]
  24. Tsuji K., Yagi T. 1980; Significance of hydrogen burst from growing cultures ofDesulfovibrio vulgarisMiyazahi and the role of hydrogenase and cytochromes in energy production systems. Archives of Microbiology 125:35–42
    [Google Scholar]
  25. Ward D. M., Olson G. J. 1980; Terminal processes in the anaerobic degradation of an algal- bacterial mat in a high sulphate hot spring. Applied and Environmental Microbiology 40:67–74
    [Google Scholar]
  26. Woese C. R., Magnum L. J., Fox G. E. 1978; Archaebacteria. Journal of Molecular Evolution 11:245–252
    [Google Scholar]
  27. Zeikus J. G. 1979; Thermophilic bacteria: ecology, physiology and technology. Enzyme and Microbial Technology 1:243–252
    [Google Scholar]
  28. Zeikus J. G., Ng T. K. 1982; Thermophilic saccharide fermentation. In Annual Reports of Fermentation Processes, 6 Edited by Tsao G. T. New York: Academic Press;
    [Google Scholar]
  29. Zeikus J. G., Wolfe R. S. 1972; Methanobacterium thermoautotrophicum sp. nov. an anaerobic, autotrophic extreme thermophile. Journal of Bacteriology 109:707–713
    [Google Scholar]
  30. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov and sp. nov. a new chemoorganotrophic caldoactive anaerobic bacterium. Archives of Microbiology 122:41–48
    [Google Scholar]
  31. Zeikus J. G., Ben-Bassat A., Hegge P. W. 1980; Microbiology of methanogenesis in thermal volcanic environments. Journal of Bacteriology 143:432–440
    [Google Scholar]
  32. Zeikus J. G., Ben-Bassat A., Ng T.K. 1981; Thermophilic ethanol fermentations. In Trends in the Biology of Fermentations for Fuels and Chemicals pp. 397–420 Edited by Hollaender A. New York: Plenum Press;
    [Google Scholar]
  33. Zillig W., Stetter K. O., Schäfer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981a; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic Archaebacteria isolated from Icelandic solfataras. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) Originale C2:205–227
    [Google Scholar]
  34. Zillig W., Stetter K. O., Prangishvilli D., Schäfer W., Wunderl S., Janekovic D., Holz I., Palm P. 1981b; Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiringThermoproteales. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I), Originale C3:304–317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-4-1159
Loading
/content/journal/micro/10.1099/00221287-129-4-1159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error