1887

Abstract

When was treated with a bacteriostatic concentration of clofoctol [2-(2,4-dichlorobenzyl)-4-(tetramethyl-1,1,3,3-butyl)phenol], UV-absorbing material was released. Electron micrographs showed evidence of physical alteration of the bacterial envelope. The uptake of [C]glutamate was strongly inhibited by clofoctol, and preloaded glutamate was found to leak from the bacteria. Clofoctol caused an immediate and dramatic decrease in the amount of intracellular ATP. This was neither the consequence of the stimulation of an ATPase, nor of the inhibition of bacterial respiration. Both the proton gradient and the potential gradient across the cytoplasmic membrane collapsed and this inhibition of energy metabolism was sufficient to account for the inhibition of growth by clofoctol. At the same bacteriostatic concentration complete permeabilization of the bacteria occurred.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-4-1089
1983-04-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/4/mic-129-4-1089.html?itemId=/content/journal/micro/10.1099/00221287-129-4-1089&mimeType=html&fmt=ahah

References

  1. Baginski E. S., Foa P. P., Zak B. 1966; Determination of phosphate: study of labile organic phosphate interference. Clinica chimica acta 15:155–158
    [Google Scholar]
  2. Bakker E. P., Mangerich W. E. 1981; Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. Journal of Bacteriology 147:820–826
    [Google Scholar]
  3. Burdett I. D. J. 1980; Analysis of sites of autolysis inBacillus subtilis by electron microscopy. Journal of General Microbiology 120:35–49
    [Google Scholar]
  4. Burdett I. D. J., Higgins M. L. 1978; Study of pole assembly inBacillus subtilis by computer reconstitution of septal growth zones seen in longitudinal thin sections of cells. Journal of Bacteriology 133:959–971
    [Google Scholar]
  5. Cashel M., Gallant J. 1969; Two compounds implicated in the R.C. gene ofEscherichia coli. Nature (London) 221:838–841
    [Google Scholar]
  6. Cohen G. N., Rickenberg H. V. 1956; Concentration specifique reversible des aminoacides chezEscherichia coli. Annales de I’Institut Pasteur 91:693–720
    [Google Scholar]
  7. Combe J., Simonnet F., Yablonsky F., Simonnet G. 1980; Fixation du clofoctol par les bacteries. Journal de Pharmacologie 11:411–425
    [Google Scholar]
  8. Harold F. M., Baarda J. R. 1968; Inhibition of membrane transport inStreptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. Journal of Bacteriology 96:2025–2034
    [Google Scholar]
  9. Harold F. M., Baarda J. R., Baron C., Abrams A. 1969; Inhibition of membrane bound adenosine triphosphatase and of cation transport inStreptococcus faecalis by A,A',dicyclohexylcarbodiimide. Journal of Biological Chemistry 244:2261–2268
    [Google Scholar]
  10. Harold F. M., Altendorf K. H., Hirata H. 1974; Probing membrane transport mechanisms with ionophores. Annals of the New York Academy of Sciences 235:149–160
    [Google Scholar]
  11. Kaback H. R., Milner L. S. 1970; Relationship of a membrane bound D-(-)- lactic dehydrogenase to amino acid transport in isolated bacterial membranes preparation. Proceedings of the National Academy of Sciences of the United States of America 66:1008–1015
    [Google Scholar]
  12. Konings W. N., Freese E. 1972; Amino acid transport in membrane vesicles ofBacillus subtilis. Journal of Biological Chemistry 247:2408–2418
    [Google Scholar]
  13. Konings W. N., Bisschop A., Veenhuis M., Vermeulen C. A. 1973; New procedure for the isolation of membrane vesicles ofBacillus subtilis and an electron microscopy study of their ultrastructure. Journal of Bacteriology 116:1456–1462
    [Google Scholar]
  14. Macleod R. A., Thurman P., Rogers H. J. 1973; Comparative transport activity of intact cells, membrane vesicles and mesosomes ofBacillus licheniformis. Journal of Bacteriology 113:329–340
    [Google Scholar]
  15. Mitchell P. 1977; Vectorial chemiosmotic processes. Annual Review of Biochemistry 46:996–1005
    [Google Scholar]
  16. Monteil H., Schoun J., Guinard M. 1974; A Na+ K+ activated Mg++ dependent ATPase released fromProteus L-form membranes. European Journal of Biochemistry 41:525–532
    [Google Scholar]
  17. Moore C., Pressman B. C. 1964; Mechanism of action of valinomycin on mitochondria. Biochemical and Biophysical Research Communications 15:562–567
    [Google Scholar]
  18. Salet J., Melekian B. 1978; Etude clinique du clofoctol dans le traitement des infections respiratoires et de la sphere O.R.L. Gazette medicale 85:1756–1759
    [Google Scholar]
  19. Simonnet F., Simonnet G., Combe J. 1979; Action du clofoctol sur les bacteries a Gram positif. Journal de Pharmacologie 10:303–314
    [Google Scholar]
  20. Spizizen J. 1958; Transformation of biochemically deficient strains ofB. subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  21. Tsuchiya T., Rosen B. P. 1975; Characterization of an active transport system for calcium in inverted membrane vesicles ofE. coli. Journal of Biological Chemistry 250:7687–7692
    [Google Scholar]
  22. Vialatte J. 1978; Etude d’une nouvelle molecule antibacterienne chez l’enfant. Diagnostic 207:65–68
    [Google Scholar]
  23. Yablonsky F., Simonnet G. 1982; Action of clofoctol on cell wall synthesis. Journal de Pharmacologie 13:515–524
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-4-1089
Loading
/content/journal/micro/10.1099/00221287-129-4-1089
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error