1887

Abstract

Mutants of K12 defective in the gene () no longer utilize glucose or -acetylglucosamine in preference to lactose, but competition between either of these sugars and another that also enters by a phosphotransferase (PT) mechanism is not affected. In this they differ from () mutants. In mutants, glucose does not exclude any other sugar, though -acetylglucosamine still does so. In mutants that are also the phosphoenolpyruvate-dependent phosphorylation of glucose or methyl α-glucoside is reduced by 90%: -acetylglucosamine phosphorylation is not affected. The mutation does not affect the phosphorylation of either of these compounds. The wild-type alleles and are dominant in λ heterozygotes. Glucose inhibits the lactose permease of wild-type cells, but only when the permease is present in low amounts. The inhibition is also relieved (1) by induction of another transport system that is subject to regulation by the system or (2) by an mutation. We suggest that the gene specifies a protein that, in cells transporting certain sugars by a PT mechanism, acts to inhibit active transport systems. The protein is present in limiting concentration in the cell, sufficient only to inhibit the basal, uninduced, level of the active transport systems. In consequence the inducer (or its precursor) may be excluded from the cell and induction thus prevented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-2-337
1983-02-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/2/mic-129-2-337.html?itemId=/content/journal/micro/10.1099/00221287-129-2-337&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli . Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli . Proceedings of the Royal Society of London B165:179–188
    [Google Scholar]
  3. Bachmann B. J. 1972; Pedigrees of some mutant strains of Escherichia coli K12. Bacteriological Reviews 36:525–557
    [Google Scholar]
  4. Berman M., Zwaig N., Lin E. C. C. 1970; Suppression of a pleiotropic mutant affecting glycerol dissimilation. Biochemical and Biophysical Research Communications 38:272–275
    [Google Scholar]
  5. Britton P., Boronat A., Hartley D. A., Jones-Mortimer M. C., Kornberg H. L., Parra F. 1983; Phosphotransferase-mediated regulation of carbohydrate utilisation in Escherichia coli K12: location of the gsr (tgs) and iex (err) genes by specialized transduction. Journal of General Microbiology 129:349–358
    [Google Scholar]
  6. Cordaro J. C., Roseman S. 1972; Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium . Journal of Bacteriology 112:17–29
    [Google Scholar]
  7. Curtis S. J., Epstein W. 1975; Phosphorylation of d-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotrans- ferase and glucokinase. Journal of Bacteriology 122:1189–1199
    [Google Scholar]
  8. Ferenci T., Kornberg H. L. 1974; The utilisation of fructose by Escherichia coli: properties of a mutant defective in fructose 1-phosphate kinase activity. Biochemical Journal 132:341–347
    [Google Scholar]
  9. Fraenkel D. G., Falcoz-Kelly F., Horecker B. L. 1964; The utilisation of glucose-6-phosphate by glucokinaseless and wild-type strains of E. coli . Proceedings of the National Academy of Sciences of the United States of America 52:1207–1313
    [Google Scholar]
  10. Gershanovitch V. N., Bourd G. I., Jurovitzkaya N. V., Skavronskaya A. G., Klyutchova V. V., Shabolenko V. P. 1967; β-Galactosidase induction in cells of Escherichia coli not utilising glucose. Biochimica et biophysica acta 134:188–190
    [Google Scholar]
  11. Gershanovitch V. N., Ilyina T. S., Rusina O. Y., Yourovitskaya N. V., Bolshakova T. N. 1977; Repression of inducible enzyme synthesis in a mutant of Escherichia coli K12 deleted for the ptsH gene. Molecular and General Genetics 153:185–190
    [Google Scholar]
  12. Jones-Mortimer M. C., Kornberg H. L. 1974; Genetic control of inducer exclusion by Escherichia coli . FEBS Letters 48:93–95
    [Google Scholar]
  13. Kalachev I. YA., Umyaroz A. M., Bourd G. I. 1981; Interaction of membrane transport proteins in E. coli K12. Biokhimiya 46:732–743 Russian 611–620 (English)
    [Google Scholar]
  14. Koch A. L. 1971; Local and non-local interactions of fluxes mediated by the glucose and galactose permeases of Escherichia coli . Biochimica et biophysica acta 249:197–215
    [Google Scholar]
  15. Kornberg H. L. 1972; Nature and regulation of hexose uptake by Escherichia coli . In The Molecular Basis of Biological Transport, Miami Winter Symposia 3 pp. 157–180 Edited by Woessner J. F., Huijing F. London: Academic Press;
    [Google Scholar]
  16. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli . Symposia of the Society for Experimental Biology 27:175–193
    [Google Scholar]
  17. Kornberg H. L. 1981; Formation and utilisation of PEP in microbial carbohydrate transport. Current Topics in Cellular Regulation 18:313–327
    [Google Scholar]
  18. Kornberg H. L., Jones-Mortimer M. C. 1975; ptsX: a gene involved in the uptake of glucose and fructose by Escherichia coli . FEBS Letters 51:1–4
    [Google Scholar]
  19. Kornberg H. L., Reeves R. E. 1972a; Correlation between hexose transport and phosphotransferase activity in Escherichia coli . Biochemical Journal 126:1241–1243
    [Google Scholar]
  20. Kornberg H. L., Reeves R. E. 1972b; Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli . Biochemical Journal 128:1339–1344
    [Google Scholar]
  21. Kornberg H. L., Smith J. 1969; Genetic control of hexose phosphate uptake by Escherichia coli . Nature, London 223:1261–1262
    [Google Scholar]
  22. Kornberg H. L., Watts P. D. 1978; Roles of the err-gene products in regulating carbohydrate uptake by Escherichia coli . FEBS Letters 89:329–332
    [Google Scholar]
  23. Kornberg H. L., Watts P. D. 1979; tgs and crr: genes involved in catabolite inhibition and inducer exclusion in Escherichia coli . FEBS Letters 104:313–316
    [Google Scholar]
  24. Kornberg H. L., Watts P. D., Brown K. 1980; Mechanisms of inducer exclusion by glucose. FEBS Letters 117:K28–K36
    [Google Scholar]
  25. Kundig W., Ghosh S., Roseman S. 1964; Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proceedings of the National Academy of Sciences of the United States of America 52:1067–1074
    [Google Scholar]
  26. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26:249–256
    [Google Scholar]
  27. Mcginnis J. F., Paigen K. 1969; Catabolite inhibition: a general phenomenon in the control of carbohydrate utilisation. Journal of Bacteriology 100:902–913
    [Google Scholar]
  28. Mcginnis J. F., Paigen K. 1973; Site of catabolite inhibition of carbohydrate metabolism. Journal of Bacteriology 114:885–887
    [Google Scholar]
  29. Monod J. 1942 Recherchessur la Croissance des Cultures Bactériennes. Paris: Hermann et Cie;
    [Google Scholar]
  30. Osumi T., Saier M. H. 1982; Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proceedings of the National Academy of Sciences of the United States of America 79:1457–1461
    [Google Scholar]
  31. Pastan I., Perlman R. L. 1969; Repression of β-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. Journal of Biological Chemistry 244:5836–5842
    [Google Scholar]
  32. Postma P. W. 1982; Regulation of sugar transport in Salmonella typhimurium . Armales de Microbiologie 133A:261–267
    [Google Scholar]
  33. Postma P. W., Roseman S. 1976; The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochimica et biophysica acta 457:213–257
    [Google Scholar]
  34. Rickenberg H. V., Cohen G. N., Buttin G., Monod J. 1956; La galactoside-perméase d’Escherichia coli . Armales de l’Institut Pasteur 91:829–857
    [Google Scholar]
  35. Roseman S. 1972; A bacterial phosphotransferase system and its role in sugar transport. In The Molecular Basis of Sugar Transport, Miami Winter Symposia 3 pp. 181–215 Edited by Woessner J. F., Huijing F. London: Academic Press;
    [Google Scholar]
  36. Saier M. H., Feucht B. U. 1975; Coordinate regulation of adenylatecyclase and carbohydrate permeases by the phosphoenolpyruvate: sugar phosphotransferase in Salmonella typhimurium . Journal of Biological Chemistry 250:7078–7080
    [Google Scholar]
  37. Saier M. H., Roseman S. 1972; Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Biological Chemistry 247:972–975
    [Google Scholar]
  38. Saier M. H., Roseman S. 1976; Sugar transport. The crr mutation: its effect on the repression of enzyme synthesis. Journal of Biological Chemistry 251:6598–6605
    [Google Scholar]
  39. Saier M. H., Stiles C. D. 1975; Regulation of bacterial metabolism. In Molecular Dynamics in Biological Membranes pp. 99–105 (Heidelberg Science Library) Berlin: Springer Verlag;
    [Google Scholar]
  40. Salomon Y., Londos C., Rodbell M. 1974; A highly sensitive adenylate cyclase assay. Analytical Biochemistry 58:541–548
    [Google Scholar]
  41. Wang R. J., Morse H. G., Morse M. L. 1970; Carbohydrate accumulation and metabolism in Escherichia coli: characteristics of the reversions of ctr mutations. Journal of Bacteriology 104:1318–1324
    [Google Scholar]
  42. Watts P. D. 1979 Regulation of carbohydrate uptake by the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. Ph.D. thesis, University of Cambridge
    [Google Scholar]
  43. Waygood E. B. 1980; Resolution of the phosphoenolpyruvate : fructose phosphotransferase system of Escherichia coli into two components; enzyme IIfructose and fructose-induced HPr-like protein (FPr). Canadian Journal of Biochemistry 58:1144–1146
    [Google Scholar]
  44. Winkler H. H. 1966; A hexose-phosphate transport system in Escherichia coli . Biochimica et biophysica acta 117:231–240
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-2-337
Loading
/content/journal/micro/10.1099/00221287-129-2-337
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error