1887

Abstract

A recently discovered antibiotic (CDA; calcium-dependent antibiotic) of A3(2) was found to be effective against a wide range of Gram-positive bacteria only in the presence of calcium ions. Producer and non-producer strains were identified and several media tested for their ability to support antibiotic production. The action of calcium was not simulated by any of the other cations tested. The antibiotic was found to induce discrete conductance fluctuations in planar lipid bilayer consistent with a channel-forming action. The electrical potential difference caused by a concentration difference of various salts across the CDA-containing bilayer, showed the channel to be cation-selective but of a size that discriminated against tetramethyl ammonium and choline ions. The data indicate that the antibiotic activity of CDA is due to its action as a calcium-dependent ionophore.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-12-3565
1983-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/12/mic-129-12-3565.html?itemId=/content/journal/micro/10.1099/00221287-129-12-3565&mimeType=html&fmt=ahah

References

  1. Bamberg E., Janko K. 1976; Single channel conductance at lipid bilayer membranes in presence of monazomycin. Biochimica et biophysica acta 426:447–450
    [Google Scholar]
  2. Bamberg E., LäUGER P. 1974; Temperature dependent properties of Gramicidin A channels. Biochimica et biophysica acta 367:127–133
    [Google Scholar]
  3. Bangham J. A., Lea E.J.A. 1978; The interaction of detergents with bilayer lipid membranes. Biochimica et biophysica acta 511:388–396
    [Google Scholar]
  4. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84:188–198
    [Google Scholar]
  5. Bradley S. G. 1960; Reciprocal crosses in Strepto- myces coelicolor. . Genetics 45:613–619
    [Google Scholar]
  6. Cass A., Finkelstein A., Krespi V. 1970; The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Journal of General Physiology 56:100–124
    [Google Scholar]
  7. Eisenberg M., Hall J. E., Mead C. A. 1973; The nature of the voltage dependent conductance induced by alamethicin in black lipid membranes. Journal of Membrane Biology 14:143–176
    [Google Scholar]
  8. Ermishkin L. N., Kasumov KH. M., Patseluyev V. M. 1977; Properties of amphotericin B channels in a lipid bilayer. Biochimica et biophysica acta 470:357–367
    [Google Scholar]
  9. Finkelstein A., Cass A. 1968; Permeability and electrical properties of thin lipid membranes. Journal of General Physiology 52:145s–173s
    [Google Scholar]
  10. Finkelstein A., Holz R. 1973; Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In Membranes 2 pp. 377–408 Eisenman G. Edited by New York: Marcel Dekker;
    [Google Scholar]
  11. Goldman D. 1943; Potential, impedance and rectification in membranes. Journal of General Physiology 27:37–60
    [Google Scholar]
  12. Hladky S. B., Haydon D. A. 1972; Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochimica et biophysica acta 274:294–312
    [Google Scholar]
  13. Hladky S. B., Gordon L.G.M., Haydon D. A. 1974; Molecular mechanisms of ion transport in lipid membranes. Annual Review of Physical Chemistry 25:11–37
    [Google Scholar]
  14. Hodgkin A. L., Katz B. 1949; The effect of sodium ions on the electrical activity of the giant axon of the squid. Journal of Physiology 108:37–77
    [Google Scholar]
  15. Hopwood D. A. 1959; Linkage and the mechanism of recombination in Streptomyces coelicolor. Annals of the New York Academy of Sciences 81:887–898
    [Google Scholar]
  16. Hopwood D. A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. . Bacteriological Reviews 31:373–403
    [Google Scholar]
  17. Hopwood D. A., Wright H. M. 1983; CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2). Journal of General Microbiology 129:3575–3579
    [Google Scholar]
  18. Hyono A., Hendriks TH., Daemen F. J., Bonting S. L. 1975; Movements of calcium through artificial lipid membranes and the effects of ionophores. Biochimica et biophysica acta 389:34–46
    [Google Scholar]
  19. Kirby R., Wright L. F., Hopwood D. A. 1975; Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature; London: 254265–267
    [Google Scholar]
  20. Kutzner H. J., Waksman S. A. 1959; Streptomyces coelicolor Müller and Streptomyces violaceo- ruber Waksman and Curtis, two distinctly different organisms. Journal of Bacteriology 78:528–538
    [Google Scholar]
  21. Lea E.J.A., Collins J. C. 1979; The effect of the plant hormone abscisic acid on lipid bilayer membranes. New Phytologist 82:11–18
    [Google Scholar]
  22. Lea E.J.A., Croghan P. C. 1969; The effect of 2,4-dinitrophenol on the properties of thin phospholipid films. Journal of Membrane Biology 1:225–237
    [Google Scholar]
  23. Lomovskaya N. A., Mkrtumian N. M., Gostim-Shaya N. L., Danilenko V. N. 1972; Characterization of temperate actinophage ɸC31 isolated from Streptomyces coelicolor A3(2). . Journal of Virology 9:258–262
    [Google Scholar]
  24. Mclaughlin S. 1972; The mechanism of action of DNP on phospholipid bilayer membranes. Journal of Membrane Biology 9:361–372
    [Google Scholar]
  25. Mueller P., Rudin D. O., Ti-Tien H., Wescott W. C. 1963; Methods for the formation of single bimolecular lipid membranes in aqueous solution. Journal of Physical Chemistry 67:534–535
    [Google Scholar]
  26. Okanishi M., Suzuki K., Umezawa H. 1974; Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. Journal of General Microbiology 80:389–400
    [Google Scholar]
  27. Reed P. W., Lardy H. A. 1972; A23187: a divalent cation ionophore. Journal of Biological Chemistry 247:6970–6977
    [Google Scholar]
  28. Robinson B. A., Stokes R. H. 1959 Electrolyte Solutions. London: Butterworths;
    [Google Scholar]
  29. Rudd B.A.M. 1978 Genetics of pigmented secondary metabolites in Streptomyces coelicolor. Ph.D thesis University of East Anglia, Norwich, U.K.:
    [Google Scholar]
  30. Rudd B.A.M., Hopwood D. A. 1979; Genetics of actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Journal of General Microbiology 114:35–43
    [Google Scholar]
  31. Rudd B.A.M., Hopwood D. A. 1980; A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. Journal of General Microbiology 119:333–340
    [Google Scholar]
  32. Sandblom J. P., Eisenman G. 1967; Membrane potentials at zero current. Biophysical Journal 7:217–242
    [Google Scholar]
  33. Sermonti G., Spada-Sermonti I. 1955; Genetic recombination in Streptomyces. Nature; London: 176121
    [Google Scholar]
  34. Veatch W. R., Mathies R., Eisenberg M., Stryer L. 1975; Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. Journal of Molecular Biology 99:75–92
    [Google Scholar]
  35. Wright L. F., Hopwood D. A. 1976a; Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). Journal of General Microbiology 95:96–106
    [Google Scholar]
  36. Wright L. F. 1976b; Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolor A3(2). Journal of General Microbiology 96:289–297
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-12-3565
Loading
/content/journal/micro/10.1099/00221287-129-12-3565
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error