Evidence for Shorter Average -Polysaccharide Chainlength in the Lipopolysaccharide of a Bacteriophage Felix 01-sensitive Variant of Free

Abstract

Prolonged culturing in the laboratory has resulted in the formation of a stable derivative of the smooth Group E bacterial strain, Salmonella anatum A1, that is sensitive to both the R-core-specific bacteriophage Felix 01 and -polysaccharide-specific bacteriophage ε. The variant strain, designated A1-1, exhibits a normal number of irreversible binding sites for ε but the relative quality and/or accessibility of those sites appears to be diminished. Infectious ε phage particles are released more rapidly from A1-1 than from its parent under acidic pH conditions known to interfere with the phage DNA ejection step.

The purified lipopolysaccharide (LPS) of A1-1 exhibits a reduced rhamnose/hep-tose ratio in chemical assays. Fractionation of this LPS on SDS-urea-polyacrylamide gels followed by silver staining reveals a narrower range of -polysaccharide chain lengths relative to that of the parent (0 to, 20 vs. 0 to 40 repeating units, respectively).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-10-3177
1983-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/10/mic-129-10-3177.html?itemId=/content/journal/micro/10.1099/00221287-129-10-3177&mimeType=html&fmt=ahah

References

  1. Anaker R.L., Finkelstein K.A., Haskins W.T., Landy M., Milner K.C., Ribi E., Stashak P.W. 1964; Origin and properties of naturally occurring hapten fromEscherichia coli. . Journal of Bacteriology 88:1705–1720
    [Google Scholar]
  2. Bayer M.E. 1974; Ultrastructure and organization of the bacterial envelope. Annals of the New York Academy of Sciences 235:6–28
    [Google Scholar]
  3. Bayer M.E. 1979; The fusion sites between outer membrane and cytoplasmic membrane of bacteria: their role in membrane assembly and virus infection. In Bacterial Outer Membranes: Biogenesis and Functions pp. 167–202 Edited by Inouye M. New York: John Wiley;
    [Google Scholar]
  4. Bayer M.E., Takeda K., Uetake H. 1980; Effects of receptor destruction by Salmonella bacteriophages ε15 and C341. Virology 105:328–337
    [Google Scholar]
  5. Dische Z. 1955; New color reactions for determination of sugars in polysaccharides. In Methods of Biochemical Analysis II p. 313 Edited by Glick D. New York & London: Interscience;
    [Google Scholar]
  6. Felix A., Callow B. 1943; Typing of paratyphoid B bacilli by means of Vi bacteriophage. British Medical Journal 2:127–130
    [Google Scholar]
  7. Fey H., Burgi E., Margadant A., Boller E. 1978; An economic and rapid diagnostic procedure for the detection of Salmonella/Shigella using the polyvalent Salmonella phage 0-1. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I, Orig. A240:7–15
    [Google Scholar]
  8. Goldman R.C., Leive L. 1980; Heterogeneity of antigenic side chain length in lipopolysaccharide fromEscherichia coli Ol 11 andSalmonella typhimur- ium LT2. European Journal of Biochemistry 107:145–153
    [Google Scholar]
  9. Goldman R.C., White D., Ørskov F., Ørskov I., Rick P.D., Lewis M.S., Bhattacharjee A.K., Leive L. 1982; A surface polysaccharide ofEscherichia coli Ol 11 contains O-antigen and inhibits agglutination of cells by O-antiserum. Journal of Bacteriology 151:1210–1221
    [Google Scholar]
  10. Jann B., Jann K., Schmidt G., Ørskov I., Ørskov F. 1970; Immunochemical studies of polysaccharide surface antigens ofEscherichia coli0100 :K? (B) :H2. European Journal of Biochemistry 15:29–39
    [Google Scholar]
  11. Johnson K.G., Perry M.B. 1976; Improved techniques for the preparation of bacterial lipopoly- saccharides. Canadian Journal of Microbiology 22:29–34
    [Google Scholar]
  12. Kanegasaki S., Tomita T. 1976; Mutants ofS. anatum which block the phage e15 infection at early stages. Journal of Bacteriology 127:7–13
    [Google Scholar]
  13. Kent J.L., Osborn M.J. 1968; Properties of the O-specific hapten formedin vivo by mutant strains ofSalmonella typhimurium. . Biochemistry 7:4396–4408
    [Google Scholar]
  14. Lindberg A.A., Hellerqvist C.G. 1971; Bacteriophage attachment sites, serological specificity, and chemical composition of the lipopoly- saccharides of semirough and rough mutants ofSalmonella typhimurium. . Journal of Bacteriology 105:57–64
    [Google Scholar]
  15. Lindberg A.A., Holmes T. 1969; Influence of O side chains on the attachment of the Felix 01 bacteriophage to Salmonella bacteria. Journal of Bacteriology 99:513–519
    [Google Scholar]
  16. Mcconnell M.R. 1976; Multiple steps are involved in the irreversible attachment of bacteriophage ε15 to its host cell, Salmonella anatum. . Ph.D. thesis Tufts University; U.S.A.:
    [Google Scholar]
  17. Mcconnell M.R., Schoelz J.E. 1981; Laboratory strains ofSalmonella anatum that are sensitive to bacteriophages Felix 01 and ε15. Abstracts of the Annual Meeting of the American Society for Microbiology Dallas, Texas p. 130 Abstract H99
    [Google Scholar]
  18. Mcconnell M.R., Wright A. 1979; Variation in the structure and bacteriophage-inactivating capacity ofSalmonella anatum lipopolysaccharide as a function of growth temperature. Journal of Bacteriology 137:746–751
    [Google Scholar]
  19. Mcconnell M., Reznick A., Wright A. 1979; Studies on the initial interactions of bacteriophage ε15 with its host cell,Salmonella anatum. . Virology 94:10–23
    [Google Scholar]
  20. Mcconnell M.R., Mcabee D.D., Heasley L.E., Schoelz J.E., Harlow D.R., Starn D.R. 1982; Bacteriophage ε15 is released intact from the surface of its host cell,Salmonella anatum, at acidic pH. Virology 116:650–653
    [Google Scholar]
  21. Munford R.S., Hall C.L., Rick P.D. 1980; Size heterogeneity ofSalmonella typhimurium lipo- polysaccharides in outer membranes and culture supernatant membrane fragments. Journal of Bacteriology 144:630–640
    [Google Scholar]
  22. Palva E.T., Mäkelä P.H. 1980; Lipopolysaccharide heterogeneity inSalmonella typhimuriumanalyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. European Journal of Biochemistry 107:137–143
    [Google Scholar]
  23. Robbins P., Uchida I. 1962; Studies on the chemical basis of the phage conversion of O-antigens in the E-group salmonellae. Biochemistry 1:323–325
    [Google Scholar]
  24. Smith H., Levine M. 1964; Two sequential repressions of DNA synthesis in the establishment of lysogeny by phage P22 and its mutants. Proceedings of the National Academy of Sciences of the United States of America 52:356–363
    [Google Scholar]
  25. Takacs J., Nagy G.B. 1973; The value of the 01 and R Salmonella phage tests for routine laboratory examinations. Acta veterinaria Academiae scientiarum hungaricae 23:95–115
    [Google Scholar]
  26. Takeda K., Uetake H. 1973; In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage ε15. Virology 52:148–159
    [Google Scholar]
  27. Tsai C.-M., Frasch C.E. 1982; A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  28. Westphal O., Lüderitz O., Bister F. 1952; Uber die Extraktion von Bakterien mit Phenol/Wasser. Zeitschrift fur Naturforschung B7:148–155
    [Google Scholar]
  29. Wright A. 1971; Mechanism of conversion of the Salmonella O-antigen by bacteriophage ε34. Journal of Bacteriology 105:927–936
    [Google Scholar]
  30. Wright A., Mcconnell M., Kanegasaki S. 1980; Lipopolysaccharide as phage receptor. In Virus Receptors pp. 27–58 Edited by Randall L., Phillipson L. London: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-10-3177
Loading
/content/journal/micro/10.1099/00221287-129-10-3177
Loading

Data & Media loading...

Most cited Most Cited RSS feed