Polymorphism in and Regions Behave as Chromosomal Alternatives Free

Abstract

Amongst forty wild strains of , sixteen utilized galactitol (as did K12) and seven utilized ribitol (as did C) of which six utilized -arabitol; none utilized all three polyols.

Transduction of genes for ribitol utilization ( ) to strains able to utilize galactitol ( ), whether K12 or wild strains, using wild strains and C as donors always resulted in loss of the galactitol phenotype. The genes for -arabitol use ( ) were always cotransduced with in interstrain crosses. We confirm and extend the mapping of ( Lengeler, 1977 ) and ( Reiner, 1975 ) in their respective hosts, K12 and C, by showing both regions to be 50% cotransducible with and 3% cotransducible with In reciprocal transductions, replaced . In partial diploids, and regions did not interfere with each other’s expression.

Transfer of from an Rtl Atl donor by R plasmid (pE10)-mediated conjugation, gave Gat transconjugants of K12 in which and a kanamycin resistance gene were 100% cotransducible in the region of the chromosome.

It is suggested that the and genes (or parts of them) act as alternative, or mutually exclusive, regions in the chromosome. Possible reasons for the existence of alternative characters are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-1-75
1983-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/1/mic-129-1-75.html?itemId=/content/journal/micro/10.1099/00221287-129-1-75&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N’-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  2. Alaeddinoglu N. G. 1976 Genetical analysis of variation in the ability to utilize sucrose in strains of Escherichia coli. Ph.D. thesis Reading University, U.K.:
    [Google Scholar]
  3. Alaeddinoglu N. G., Charles H. P. 1979; Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for d-serine utilization. Journal of General Microbiology 110:47–59
    [Google Scholar]
  4. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K12. , edition 6.. Microbiological Reviews 44:1–56
    [Google Scholar]
  5. Blumenthal T. 1972; PI transduction: formation of heterogenotes upon cotransduction of bacterial genes with a P2 prophage. Virology 47:76–93
    [Google Scholar]
  6. Cannon F. C., Dixon R. A., Postgate J. R., Primrose S. B. 1974; Chromosomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. . Journal of General Microbiology 80:227–239
    [Google Scholar]
  7. Charnetzky W. T., Mortlock R. P. 1974a; Ribitol catabolic pathway in Klebsiella aerogenes. . Journal of Bacteriology 119:162–169
    [Google Scholar]
  8. Charnetzky W. T., Mortlock R. P. 1974b; d-arabitol catabolic pathway in Klebsiella aerogenes. . Journal of Bacteriology 119:170–175
    [Google Scholar]
  9. Charnetzky W. T., Mortlock R. P. 1974c; Close genetic linkage of the determinants of the ribitol and d-arabitol pathways in Klebsiella aerogenes. . Journal of Bacteriology 119:176–182
    [Google Scholar]
  10. Clark A. J., Marguiles A. D. 1965; Isolation and characterization of recombination deficient mutants of Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America 53:451–459
    [Google Scholar]
  11. Colson C., Glover S. W., Symonds N., Stacey N. A. 1965; The location of the genes for host controlled modification and restriction in Escherichia coli K12. Genetics 52:1043–1050
    [Google Scholar]
  12. Cooper P. H., Hirshfield I. N., Maas W. K. 1969; Map location of arginyl tRNA synthetase mutations in Escherichia coli K12. Molecular and General Genetics 104:383–390
    [Google Scholar]
  13. Cowan S. T., Steel K. J. 1974 Manual for the identification of medical bacteria, 2nd edn.. Cambridge: Cambridge University Press.;
    [Google Scholar]
  14. Darlington C. D., Mather K. 1949 The elements of genetics. London: Allen & Unwin.;
    [Google Scholar]
  15. Edwards P. R., Ewing W. H. 1972 Identification of Enterobacteriaceae, 3rd edn.. Minneapolis: Burgess Publishing;
    [Google Scholar]
  16. Ferenci T., Kornberg H. L. 1973; The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose-1-phosphate kinase. Biochemical Journal 132:341–347
    [Google Scholar]
  17. Goldberg R. B., Bender R. A., Streicher S. L. 1974; Direct selection for PI-sensitive mutants of enteric bacteria. Journal of Bacteriology 118:810–814
    [Google Scholar]
  18. Hill S. H. A. 1980 Genetic analysis of variation in Escherichia coli. Ph.D. thesis Reading University, U.K.:
    [Google Scholar]
  19. Hill S. H. A., Charles H. P. 1980; Genetical analysis of natural variation in sucrose utilization in Escherichia coli. . Society for General Microbiology Quarterly 7:82
    [Google Scholar]
  20. Inderlied C. B., Mortlock R. P. 1977; Growth of Klebsiella aerogenes on xylitol; implications for bacterial enzyme evolution. Journal of Molecular Evolution 9:181–190
    [Google Scholar]
  21. Lengeler J. 1975a; Mutations affecting transport of hexitols d-mannitol, d-glucitol and galactitol. Journal of Bacteriology 124:26–38
    [Google Scholar]
  22. Lengeler J. 1975b; Nature and properties of hexitol transport systems in Escherichia coli. . Journal of Bacteriology 124:39–47
    [Google Scholar]
  23. Lengeler J. 1977; Analysis of mutations affecting the dissimilation of galactitol in Escherichia coli K12. Molecular and General Genetics 152:83–91
    [Google Scholar]
  24. Lengeler J., Steinberger H. 1978; Analysis of regulating mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli. . Molecular and General Genetics 164:163–169
    [Google Scholar]
  25. Low B. 1973; Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K12. Journal of Bacteriology 113:798–812
    [Google Scholar]
  26. Mcconville M. L. 1977 A study of mutants of Escherichia coli defective in haem synthesis. Ph.D. thesis Reading University, U.K.:
    [Google Scholar]
  27. Mcconville M. L., Charles H. P. 1979; Isolation of haemin-requiring mutants of Escherichia coli K12. Journal of General Microbiology 113:155–164
    [Google Scholar]
  28. Mortlock R. P., Fossitt D. D., Wood W. A. 1965; A basis for utilization of unnatural pentoses and pentitols by Aerobacter aerogenes. . Proceedings of the National Academy of Sciences of the United States of America 57:572–579
    [Google Scholar]
  29. Old D. C. 1977; The utilization of pentoses and pentitols by different biotypes of Salmonella typhi- murium. . Journal of General Microbiology 101:337–339
    [Google Scholar]
  30. Pauli G., Overath P. 1972; The ato operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. . European Journal of Biochemistry 29:553–562
    [Google Scholar]
  31. Pittard J., Loutit J. S., Adelberg E. A. 1963; Gene transfer by F prime strains of Escherichia coli K12. I. Delay in initiation of chromosome transfer. Journal of Bacteriology 85:1394–1401
    [Google Scholar]
  32. Reeves P. 1959 Studies in bacterial genetics. Ph.D. thesis London University, U.K.:
    [Google Scholar]
  33. Reiner A. M. 1975; Genes for ribitol and d-arabitol catabolism in Escherichia coli: their loci in Escherichia coli C and absence in K12 and B strains. Journal of Bacteriology 123:530–536
    [Google Scholar]
  34. Rigby P. W. J., Burleigh B. D., Hartley B. S. 1974; Gene duplication in experimental enzyme evolution. Nature; London: 251200–204
    [Google Scholar]
  35. Rigby P. W. J., Gething M. J., Hartley BS. 1976; Construction of intergeneric hybrids using bacteriophage PI CM: transfer of the Klebsiella aerogenes ribitol dehydrogenase gene to Escherichia coli. . Journal of Bacteriology 125:728–738
    [Google Scholar]
  36. Salisbury V., Hedges R. W., Datta N. 1972; Two modes of curing transmissible bacterial plasmids. Journal of General Microbiology 70:443–452
    [Google Scholar]
  37. Scangos G. A., Reiner A. M. 1978; Ribitol and d- arabitol catabolism in Escherichia coli. . Journal of Bacteriology 134:492–500
    [Google Scholar]
  38. Tomoeda M., Inuzuka M., Kubo N., Nakamura S. 1968; Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulphate. Journal of Bacteriology 95:1078–1089
    [Google Scholar]
  39. Woodward M. J. 1980 Genetic analysis of variation in Escherichia coli. Ph.D. thesis Reading University, U.K.:
    [Google Scholar]
  40. Woodward M. J., Charles H. P. 1980; Introduction of genes for sorbose utilization into Escherichia coli K12. Society for General Microbiology Quarterly 7:81
    [Google Scholar]
  41. Woodward M. J., Charles H. P. 1982; Genes for L-sorbose utilization in Escherichia coli. . Journal of General Microbiology 128:1969–1980
    [Google Scholar]
  42. Wu T. T. 1976a; Growth of a mutant of Escherichia coli K12 on xylitol by recruiting enzymes for d-xylose and L-1,2-propanediol metabolism. Biochimica et biophysica acta 428:656–663
    [Google Scholar]
  43. Wu T. T. 1976b; Growth on d-arabitol of a mutant strain of Escherichia coli Kl 2 using a novel dehydrogenase and enzymes related to l-1,2-propanediol and d-xylose metabolism. Journal of General Microbiology 94:246–256
    [Google Scholar]
  44. Wu T. T., Lin E. C. C., Tanaka S. 1968; Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel source of carbon. Journal of Bacteriology 96:447–456
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-1-75
Loading
/content/journal/micro/10.1099/00221287-129-1-75
Loading

Data & Media loading...

Most cited Most Cited RSS feed