1887

Abstract

oxidized anthracene predominantly to -1,2-dihydroxy-1,2-dihydroanthracene and 1-anthryl sulphate. In addition, several unidentified metabolites were produced. The major compounds formed were isolated by TLC and HPLC, and identified by their UV-visible absorption and mass spectra. Experiments with [9-C]anthracene indicated that the total amount of anthracene metabolized increased from 2·0% at 2 h to 26·9% at 48 h. The ratio of organic-soluble to water-soluble metabolites at 2 h was 85:15 while at 48 h it was 43:57. The results demonstrate that has the ability to oxidize anthracene in a manner similar to that observed in mammals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-9-2055
1982-09-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/9/mic-128-9-2055.html?itemId=/content/journal/micro/10.1099/00221287-128-9-2055&mimeType=html&fmt=ahah

References

  1. Akhtar M. N., Boyd D. R., Thompson N. J., Koreeda M., Gibson D. T., Mahadevan V., Jerina D. M. 1975; Absolute stereochemistry of the dihydroanthracene-cw and irans-1,2-diols produced from anthracene by mammals and bacteria. Journal of the Chemical Society2506–2511
    [Google Scholar]
  2. Akhtar M. N., Hamilton J. G., Boyd D. R., Braunstein A., Seifried H. E., Jerina D. M. 1979 Journal of the Chemical Society-Perkin Transactions1442–1446
    [Google Scholar]
  3. Blumer M. 1976; Polycyclic aromatic hydrocarbons in nature. Scientific American 234:34–44
    [Google Scholar]
  4. Boyland E., Levi A. A. 1935; Production of dihydroxydihydroanthracene from anthracene. Biochemical Journal 29:2679–2683
    [Google Scholar]
  5. Boyland E., Shoppee C. W. 1947; The metabolism of polycyclic compounds. The configuration of the dihydroxydihydroanthracene produced from anthracene. Journal of the Chemical Society801–804
    [Google Scholar]
  6. Cerniglia C. E. 1981; Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. In Reviews in Biochemical Toxicology 3 pp. 321–361 Edited by Hodgson E., Bend J. R., Philpot R. M. New York: Elsevier/North Holland;
    [Google Scholar]
  7. Cerniglia C. E., Gibson D. T. 1977; Metabolism of naphthalene by Cunninghamella elegans. Applied and Environmental Microbiology 34:363–370
    [Google Scholar]
  8. Cerniglia C. E., Gibson D. T. 1978; Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Archives of Biochemistry and Biophysics 186:121–127
    [Google Scholar]
  9. Cerniglia C. E., Gibson D. T. 1979; Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. Journal of Biological Chemistry 254:12174–12180
    [Google Scholar]
  10. Cerniglia C. E., Herbert R. L., Szaniszlo P. J., Gibson D. T. 1978; Fungal transformation of naphthalene. Archives of Microbiology 117:135–143
    [Google Scholar]
  11. Colla C., Fiecchi A., Treccani V. 1958; Ri-cherche sul metabolismo ossidativo microbico dell’ anthracene e del fenanthrene. Annales de microbiologie 9:87–91
    [Google Scholar]
  12. Criegee R., Marchand R., Wannowius H. 1942; Organic osmium compounds. II. Mitteilung. Annals of Chemistry 550:99
    [Google Scholar]
  13. Daly J. W., Jerina D. M., Witkop B. 1972; Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28:1129–1149
    [Google Scholar]
  14. Dodge R. H., Cerniglia C. E., Gibson D. T. 1979; Fungal metabolism of biphenyl. Biochemical Journal 178:223–230
    [Google Scholar]
  15. Evans W. C., Fernley H. N., Griffith E. 1965; Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring fission mechanism. Biochemical Journal 95:819–831
    [Google Scholar]
  16. Fu P. P., Harvey R. G., Beland F. A. 1978; Molecular orbital theoretical prediction of the isomeric products formed from reactions of arene oxides and related metabolites of polycyclic aromatic hydrocarbons. Tetrahedron 34:857–866
    [Google Scholar]
  17. Gray H. H. P., Thornton H. G. 1928; Soil bacteria that decompose certain aromatic compounds. Zentralblatt für Bakteriologie, Parasitenkunde, Infectionskrankheiten und Hygiene 73:74–96
    [Google Scholar]
  18. Jerina D. M., Selander H., Yagi H., Wells M. C., Davey J. F., Mahadevan V., Gibson D. T. 1976; Dihydrodiols from anthracene and phen-anthrene. Journal of the American Chemical Society 98:5988–5996
    [Google Scholar]
  19. Patel T. R., Gibson D. T. 1974; Purification and properties of ( + )-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. Journal of Bacteriology 119:879–888
    [Google Scholar]
  20. Rogoff M. N., Wender J. 1957; 3-Hydroxy-2-naphthoic acid as an intermediate in the bacterial dissimilation of anthracene. Journal of Bacteriology 74:108–109
    [Google Scholar]
  21. Sims P. 1964; The metabolism of anthracene and some related compounds in rats. Biochemical Journal 92:621–631
    [Google Scholar]
  22. Wackett L. P., Gibson D. T. 1981; Metabolism of xenobiotic compounds by fungal enzymes. 81st Annual Meeting of the American Society for Microbiology p. 163
    [Google Scholar]
  23. Yang S. K., Mccourt D. W., Gelboin H. V., Miller J. R., Roller P. P. 1977; Stereochemistry of the hydrolysis products and their acetonides of two stereoisomeric benzo(a)pyrene 7,8-diol 9,10-epoxides. Journal of the American Chemical Society 99:5124–5129
    [Google Scholar]
/content/journal/micro/10.1099/00221287-128-9-2055
Loading
/content/journal/micro/10.1099/00221287-128-9-2055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error