1887

Abstract

The effect of -glucose on growth and erythromycin production by was investigated. -Glucose stimulated growth and caused a strong but temporary suppression of antibiotic formation. Maximum specific suppression of erythromycin formation occurred at a carbohydrate concentration of 20 mg ml. A non-metabolizable analogue of glucose, 2-deoxy--glucose, also suppressed antibiotic formation. Since glucose caused a decrease in erythromycin formation only when added before the stage of antibiotic production, we conclude that this sugar exerted a transient repressive effect on erythromycin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-9-2011
1982-09-01
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/9/mic-128-9-2011.html?itemId=/content/journal/micro/10.1099/00221287-128-9-2011&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1978; Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 14:159–164
    [Google Scholar]
  2. Corcoran J. W. 1975; Antibiotic biosynthesis. Methods in Enzymology 43:487–498
    [Google Scholar]
  3. Gallo M., Katz E. 1972; Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. Journal of Bacteriology 109:659–667
    [Google Scholar]
  4. Hu W. S., Demain A. L. 1979; Regulation of antibiotic biosynthesis by utilizable carbon sources. Process Biochemistry 14:2–6
    [Google Scholar]
  5. Martín J. F., Demain A. L. 1980; Control of antibiotic biosynthesis. Microbiological Reviews 44:230–251
    [Google Scholar]
  6. Martin J. R., Goldstein A. W. 1970; Final steps in erythromycin biosynthesis. In Progress in Antimicrobial Agents and Anticancer Chemotherapy 2: pp. 1112–1116 Tokyo: University of Tokyo Press;
    [Google Scholar]
  7. Oleinick N. L. 1975; The erythromycins. In Antibiotics 3 pp. 396–419 Corcoran J. W., Hahn F. E. Edited by New York: Springer-Verlag;
    [Google Scholar]
  8. Raczynska-Bojanowska K., Ruczaj Z., Ostrowska-Krysiak B., Roszkowski J., Gaworowska-Michalk J., Sawnor-KORSZYNSKA D. 1970; Precursors and control in erythromycin biosynthesis. Acta microbiologica polonica 2:103–110
    [Google Scholar]
  9. Redshaw P. A., McCann P. A., Sankaran L., Pogell B. M. 1976; Control of differentiation in streptomycetes: involvement of extrachromosomal deoxyribonucleic acid and glucose repression in aerial mycelia development. Journal of Bacteriology 125:698–705
    [Google Scholar]
  10. Satoh A., Ogawa H., Satomura Y. 1976; Regulation of N-acetylkanamycin amidohydrolase in the idiophase in kanamycin fermentation. Agricultural and Biological Chemistry 40:191–196
    [Google Scholar]
  11. Smith R. L., Bungay H. R., Pittenger R. C. 1962; Growth-biosynthesis relationships in erythromycin fermentation. Applied Microbiology 10:293–296
    [Google Scholar]
  12. Spizek J., Chick M., Corcoran J. W. 1965; Biogenetic relationship of the erythromycins and the lactone of erythromycin B. Antimicrobial Agents and Chemotherapy 5:138–143
    [Google Scholar]
  13. Tyler B., Loomis W. F., Magasanik B. 1967; Transient repression of the lac operon. Journal of Bacteriology 94:2001–2011
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-9-2011
Loading
/content/journal/micro/10.1099/00221287-128-9-2011
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error