Numerical Taxonomy of Moderately Halophilic Gram-negative Rods Free

Abstract

A study was made of 516 randomly selected isolates of moderately halophilic bacteria from solar salterns showing salinities between 8·8 and 40·0% (w/v) total salts, located in S.E. Spain. After purification, many cytological, physiological, biochemical, nutritional and antibiotic sensitivity characters were determined for 106 selected saltern isolates and two reference strains. Data were coded and analysed by numerical techniques using the Jaccard coefficient (), and clusters of strains were obtained by average linkage (UPGMA) analysis. Nine major phenons were found at the 72·5% similarity level. The properties of each phenon are given, their taxonomic affinities are discussed, and typical reference strains are suggested. Almost all the strains were related to genera known to contain marine species. A large number of the strains could be tentatively assigned to the genus , suggesting that this may be an abundant taxon of moderately halophilic Gram-negative rods in solar salterns.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-9-1959
1982-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/9/mic-128-9-1959.html?itemId=/content/journal/micro/10.1099/00221287-128-9-1959&mimeType=html&fmt=ahah

References

  1. Bain N., Shewan J. M. 1968; Identification of Aeromonas, Vibrio and related organisms. In Identification Methods for Microbiologists part B pp. 79–84 Edited by Gibbs B. M., Shapton D. A. London: Academic Press;
    [Google Scholar]
  2. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubac- teria. Journal of Bacteriology 110:402–429
    [Google Scholar]
  3. Brock T. D. 1979; Ecology of saline lakes. In Strategies of Microbial Life in Extreme Environments pp. 29–47 Edited by Shilo M. Weinheim: Verlag Chemie;
    [Google Scholar]
  4. Buchanan R. E., Gibbons N. E. editors 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella. Journal of Bacteriology 52:461–466
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  7. De Ley J., Segers P., Gillis M. 1978; Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cis- trons. International Journal of Systematic Bacteriology 28:154–168
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red-halophilic bacteria. Journal of Bacteriology 70:484–485
    [Google Scholar]
  9. Elazari-Volcani B. 1940 Studies on the microflora of the Dead Sea Ph.D. thesis Hebrew University; Jerusalem:
    [Google Scholar]
  10. Forsyth M. P., Shindler D. B., Gochnauer M. B., Kushner D. J. 1971; Salt tolerance of intertidal marine bacteria. Canadian Journal of Microbiology 17:825–828
    [Google Scholar]
  11. Frazier W. C. 1926; A method for the detection of changes in gelatin due to bacteria. Journal of Infectious Diseases 39:302–309
    [Google Scholar]
  12. Gauthier M. J., Shewan J. M., Gibson D. M., Lee J. V. 1975; Taxonomic position and seasonal variations in marine neritic environment of some Gram-negative antibiotic-producing bacteria. Journal of General Microbiology 87:211–218
    [Google Scholar]
  13. Hauxhurst J. D., Krichevsky M. I., Atlas R. M. 1980; Numerical taxonomy of bacteria from the gulf of Alaska. Journal of General Microbiology 120:131–148
    [Google Scholar]
  14. Holmes B., Owen R. J. 1979; Proposal that Flavo- bacterium breve be substituted as the type species of the genus in place of Flavobacterium aquatile and emended description of the genus Flavobacterium: status of the named species of Flavobacterium. International Journal of Systematic Bacteriology 29:416–426
    [Google Scholar]
  15. Jaccard P. 1908; Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise des sciences naturelles 44:223–270
    [Google Scholar]
  16. Jeffries C. D., Holtman D. F., Guse D. G. 1957; Rapid method for determining the activity of microorganisms on nucleic acids. Journal of Bacteriology 73:590–591
    [Google Scholar]
  17. Kaneko T., Colwell R. R. 1974; Distribution of Vibrio parahaemolyticus and related organisms in the Atlantic Ocean off South Carolina and Georgia. Applied Microbiology 28:1009–1017
    [Google Scholar]
  18. Kaneko T., Krichevsky M. I., Atlas R. M. 1979; Numerical taxonomy of bacteria from the Beaufort Sea. Journal of General Microbiology 110:111–125
    [Google Scholar]
  19. Kovacs N. 1928; Eine vereinfachte Methode zum Nachweis der Indolbildung durch Bakterien. Zeitschrift für Immunitätsforschung und experimentelle Therapie 55:311–316
    [Google Scholar]
  20. Kovacs N. 1956; Identification of Pseudomonas pyo- cyanea by the oxidase reaction. Nature; London: 178:703
    [Google Scholar]
  21. Kushner D. J. 1978; Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments pp. 317–368 Edited by Kushner D. J. London: Academic Press;
    [Google Scholar]
  22. Larsen H. 1962; Halophilism. In The Bacteria IV pp. 297–336 Edited by Gunsalus I. C., Stanier R. Y. London: Academic Press;
    [Google Scholar]
  23. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. Journal of Bacteria 85:1183–1184
    [Google Scholar]
  24. Lovelace T. E., Tubiash H., Colwell R. R. 1967; Quantitative and qualitative commensal bacterial flora of Crassostrea virginica in Chesapeake Bay. Proceedings of the National Shellfisheries Association 5882–87
    [Google Scholar]
  25. Merkel J. R. 1972; Influence of salts on the vibrio- static action of 2,4-diamino-6,7-diisopropyl pteridine. Archiv für Mikrobiologie 81:379–382
    [Google Scholar]
  26. Rhodes M. E. 1958; The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. Journal of General Microbiology 18:639–648
    [Google Scholar]
  27. Rodriguez-Valera F., Ruiz-Berraquero F., Ra-Mos-Cormenzana A. 1980; Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. Journal of General Microbiology 119:535–538
    [Google Scholar]
  28. Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbial Ecology 7:235–243
    [Google Scholar]
  29. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22
    [Google Scholar]
  30. Skerman V. B. D. 1967 A Guide to the Identification of the genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Skerman V. B. D., Mcgowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. International Journal of Systematic Bacteriology 30:225–420
    [Google Scholar]
  32. Sneath P. H. A. 1974; Genus Chromobacterium Bergonzini 1881. In Bergey’s Manual of Determinative Bacteriology, 8th edn. pp. 354–357 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-9-1959
Loading
/content/journal/micro/10.1099/00221287-128-9-1959
Loading

Data & Media loading...

Most cited Most Cited RSS feed