Cell and ATP Yields of Growing with Fumarate and H or Formate in Continuous Culture Free

Abstract

Out of 19 strains belonging to the family only and strains fermented fumarate exclusively to succinate. This fermentation was dependent on the presence of molecular hydrogen or formate. The inability of these micro-organisms to convert fumarate to succinate, acetate and CO correlated with their lack, or low activity, of oxaloacetate decarboxylase.

Continuous culture experiments were performed with in minimal or complex medium with fumarate + H or formate, and the growth parameters were determined. From the data obtained, a max value of 10·5 ± 0·8 g dry wt per mol fumarate dissimilated was calculated. This value demonstrates that, per mol fumarate reduced, at least 0·6 ± 0·05 mol ATP is produced and subsequently used for biosynthetic purposes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-8-1915
1982-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/8/mic-128-8-1915.html?itemId=/content/journal/micro/10.1099/00221287-128-8-1915&mimeType=html&fmt=ahah

References

  1. Barker H. A. 1936; On the fermentation of some dibasic C4-acids by Aerobacter aerogenes. Proceedings. Koniklijke Nederlandse akademie van weten-schappen 39:674–683
    [Google Scholar]
  2. Barton L. L., Le Gall J. , Peck H. D. 1970; Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts of the sulfate reducing bacterium,Desulfovibrio gigas. Biochemical and Biophysical Research Communications 41:1036–1042
    [Google Scholar]
  3. Beisenherz G., Boltze H., Bücher TH., Czok R., Garbade K. H., Meyer-Ahrendt E., Pflei-derer G. 1953; Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Glycero-phosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Zeitschrift für Naturforschung 8b:555–577
    [Google Scholar]
  4. Bernhard Th. 1978 Molekularer Wasserstoff als Elektronendonator im anaeroben Energiestoffwechsel von Escherichia coli Ph.D. thesis University of Göttingen, F.R.G.:
    [Google Scholar]
  5. Bernhard Th., Gottschalk G. 1978; Cell yields of Escherichia coli during anaerobic growth on fu-marate and molecular hydrogen. Archives of Microbiology 116:235–238
    [Google Scholar]
  6. Dorn M., Andreesen J. R., Gottschalk G. 1978a; Fermentation of fumarate and L-malate by Clostridium formicoaceticum. Journal of Bacteriology 133:26–32
    [Google Scholar]
  7. Dorn M., Andreesen J. R., Gottschalk G. 1978b; Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein. Archives of Microbiology 119:7–11
    [Google Scholar]
  8. Farmer I. S., Jones C. W. 1976; The energetics of Escherichia coli during aerobic growth in continuous culture. European Journal of Biochemistry 67:115–122
    [Google Scholar]
  9. Gottschalk G., Andreesen J. R. 1979; Energy metabolism in anaerobes. In Microbial Biochemistry. International Review of Biochemistry 21 pp. 86–115 Quayle J. R. Edited by Baltimore: University Park Press;
    [Google Scholar]
  10. Guest J. R. 1979; Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoro-acetate-resistant mutants. Journal of General Microbiology 115:259–271
    [Google Scholar]
  11. Hellingwerf K. J., Bolscher J. G. M., Konings W. N. 1981; The electrochemical proton gradient generated by the fumarate-reductase system in Escherichia coli and its bioenergetic implications. European Journal of Biochemistry 113:369–374
    [Google Scholar]
  12. Herbert D. 1955; Oxalacetic carboxylase of Micrococcus lysodeicticus. Methods in Enzymology 1:753–757
    [Google Scholar]
  13. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods in Microbiology 3b:117–132
    [Google Scholar]
  14. Jones R. W. 1980; The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli. Biochemical Journal 188:345–350
    [Google Scholar]
  15. Kröger A. 1974; Electron transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochimica et biophysica acta 347:273–289
    [Google Scholar]
  16. Kröger A. 1978; Fumarate as terminal acceptor of phosphorylative electron transport. Biochimica et biophysica acta 505:129–145
    [Google Scholar]
  17. Kröger A., Winkler E. 1981; Phosphorylative fumarate reduction in Vibrio succinogenes : stoichiometry of ATP synthesis. Archives of Microbiology 129:100–104
    [Google Scholar]
  18. Laanbroek H. J., Veldkamp H. 1979; Growth yield and energy generation in anaerobically-grown Campylobacter spec. Archives of Microbiology 120:47–51
    [Google Scholar]
  19. Laanbroek H. J., Stal L. J., Veldkamp H. 1978; Utilization of hydrogen and formate by Campylobacter spec, under aerobic and anaerobic conditions. Archives of Microbiology 119:99–102
    [Google Scholar]
  20. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Zeitschrift für analytische Chemie 260:8–10
    [Google Scholar]
  21. London J., Meyer E. Y. 1969; Malate utilization by a group D Streptococcus. Physiological properties and purification of an inducible malic enzyme. Journal of Bacteriology 98:705–711
    [Google Scholar]
  22. Lütgens M., Gottschalk G. 1980; Why a cosubstrate is required for anaerobic growth of Escherichia coli on citrate. Journal of General Microbiology 119:63–70
    [Google Scholar]
  23. Macy J., Kulla H., Gottschalk G. 1976; H2-dependent anaerobic growth of Escherichia coli on l-malate : succinate formation. Journal of Bacteriology 125:423–428
    [Google Scholar]
  24. Miki K., Lin E. C. C. 1975; Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol-3-phosphate to fumarate by an Escherichia coli System. Journal of Bacteriology 124:1282–1287
    [Google Scholar]
  25. Miki K., Wilson T. H. 1978; Proton translocation associated with anaerobic transhydrogenation from glycerol-3-phosphate to fumarate in Escherichia coli. Biochemical and Biophysical Research Communications 83:1570–1575
    [Google Scholar]
  26. Pfennig N., Lippert D. 1966; Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie 55:245–256
    [Google Scholar]
  27. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society B163:224–231
    [Google Scholar]
  28. Stouthamer A. H. 1969; Determination and significance of molar growth yields. Methods in Microbiology 1:629–663
    [Google Scholar]
  29. Stouthamer A. H. 1973; A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39:545–565
    [Google Scholar]
  30. Stouthamer A. H. 1977; Energetic aspects of the growth of micro-organisms. Symposia of the Society for General Microbiology 27:285–315
    [Google Scholar]
  31. Stouthamer A. H. 1980; Electron transport linked phosphorylation in anaerobes. In Anaerobes and Anaerobic Infections Gottschalk G., Pfennig N., Stuttgart H. Werner. Edited by New York: Gustav Fischer Verlag;
    [Google Scholar]
  32. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180
    [Google Scholar]
  33. Wolin M. J., Wolin E. A., Jacobs N. J. 1961; Cytochrome-producing anaerobic vibrio,Vibrio succinogenes, sp. n. Journal of Bacteriology 81:911–917
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-8-1915
Loading
/content/journal/micro/10.1099/00221287-128-8-1915
Loading

Data & Media loading...

Most cited Most Cited RSS feed