1887

Abstract

The cytochromes of K12 have been studied using low-temperature (77 K) difference spectrophotometry. Numerical (i.e. fourth-order finite difference) analysis resolved the α band of reduced oxidized spectra of whole cells from aerobically grown cultures into five components, with absorption maxima at 548, 551·5, 555·5, 560 and 563 nm. Using the same differencing intervals, numerical analysis of cells grown under oxygen-limited conditions revealed only two components, at 555·5 and 559 nm. Similar analysis of cells grown anaerobically with fumarate as electron acceptor revealed four absorption maxima, at 548, 550·5, 555·5 and 559 nm. Membrane particles from aerobically grown cells showed the same absorption bands as intact cells; preliminary evidence was obtained for a component of the 555·5 nm band that could be relatively easily washed from the membrane. The contribution of cytochrome or its CO-liganded form to the α region could not be determined by numerical analysis. We conclude, in contrast to a previous application of numerical analysis to the cytochromes of , that growth under anaerobic or oxygen-limited conditions results in the appearance of cytochromes spectrally distinct from those in aerobically grown cells. An attempt has been made to reconcile the presence of multiple components detected in the α region by numerical analysis of aerobically grown cells with the diverse components described by others.

Quantification of cytochromes revealed by numerical analysis in aerobically grown cells separated into size (and thus age) classes by zonal centrifugation showed that the major components accumulated continuously, probably exponentially, throughout the cell cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-8-1685
1982-08-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/8/mic-128-8-1685.html?itemId=/content/journal/micro/10.1099/00221287-128-8-1685&mimeType=html&fmt=ahah

References

  1. Ashcroft J. R., Haddock B. A. 1975; Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochemical Journal 148:349–352
    [Google Scholar]
  2. Barrett J., Sinclair P. 1967; The cytochrome c(552) of aerobically grown Escherichia coli str. McElroy and its function. Biochimica et biophysica acta 143:279–281
    [Google Scholar]
  3. Butler W. L., Hopkins D. W. 1970; An analysis of fourth derivative spectra. Photochemistry and Photobiology 12:451–456
    [Google Scholar]
  4. Castor L. N., Chance B. 1959; Photochemical determinations of the oxidases of bacteria. Journal of Biological Chemistry 234:1587–1592
    [Google Scholar]
  5. Chance B. 1957; Techniques for the assay of respiratory enzymes. Methods in Enzymology 4:273–329
    [Google Scholar]
  6. Deeb S. S., Hager L. P. 1964; Crystalline cytochrome b1 from Escherichia coli. Journal of Biological Chemistry 239:1024–1031
    [Google Scholar]
  7. Douglas M. W., Ward F. B., Cole J. A. 1974; The formatehydrogenlyase activity of cytochrome c552-deficient mutants of Escherichia coli K12. Journal of General Microbiology 80:557–560
    [Google Scholar]
  8. Downie J. A., Cox G. B. 1978; Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli. Journal of Bacteriology 133:477–484
    [Google Scholar]
  9. Fujita T. 1966a; Studies of soluble cytochromes in Enterobacteriaceae. II. Cytochromes b562 anD c550. Journal of Biochemistry 60:329–334
    [Google Scholar]
  10. Fujita T. 1966b; Studies on soluble cytochromes in Enterobacteriaceae. I. Detection, purification and properties of cytochrome c552 in anaerobically grown cells. Journal of Biochemistry 60:204–215
    [Google Scholar]
  11. Fujita T., Sato R. 1963; Soluble cytochromes in Escherichia coli. Biochimica et biophysica acta 77:690–693
    [Google Scholar]
  12. Gibson J. F., Hadfield S. G., Hughes M. N., Poole R. K. 1980; Effects of trialkyllead compounds on growth, respiration and ion transport in Escherichia coli K12. Journal of General Microbiology 116:99–110
    [Google Scholar]
  13. Gray C. T., Wimpenny J. W. T., Hughes D. E., Ranlett M. 1963; A soluble c-type cytochrome from anaerobically grown Escherichia coli and various Enterobacteriaceae. Biochimica et biophysica acta 67:157–160
    [Google Scholar]
  14. Haddock B. A. 1980; Microbial energetics. Philosophical Transactions of the Royal Society of London B290:329–339
    [Google Scholar]
  15. Haddock B. A., Jones C. W. 1977; Bacterial respiration. Bacteriological Reviews 41:47–99
    [Google Scholar]
  16. Haddock B. A., Downie J. A., Garland P. B. 1976; Kinetic characterization of the membrane-bound cytochromes of Escherichia coli grown under a variety of conditions by using a stopped-flow dual-wavelength spectrophotometer. Biochemical Journal 154:285–294
    [Google Scholar]
  17. Hendler R. W., Shrager R. I. 1979; Potentiometric analysis of Escherichia coli cytochromes in the optical absorbance range of 500 nm to 700 nm. Journal of Biological Chemistry 254:11288–11299
    [Google Scholar]
  18. Hendler R. W., Towne D. W., Shrager R. I. 1975; Redox properties of b-type cytochromes in Escherichia coli and rat liver mitochondria and techniques for their analysis. Biochimica et biophysica acta 376:42–62
    [Google Scholar]
  19. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  20. Itagaki E., Hager L. P. 1966; Studies on cytochrome b562 of Escherichia coli. I. Purification and crystallization of cytochrome b562. Journal of Biological Chemistry 241:3687–3695
    [Google Scholar]
  21. Kita K., Anraku Y. 1981; Composition and sequence of 6 cytochromes in the respiratory chain of aerobically grown Escherichia coli K12 in the early exponential phase. Biochemistry International 2:105–112
    [Google Scholar]
  22. Kita K., Yamato I., Anraku Y. 1978; Purification and properties of cytochrome b556 in the respiratory chain of aerobically grown Escherichia coli K12. Journal of Biological Chemistry 253:8910–8915
    [Google Scholar]
  23. O’Hara J., Gray C. T., Puig J., Pichinoty F. 1967; Defects in formatehydrogenlyase in nitratenegative mutants of Escherichia coli. Biochemical and Biophysical Research Communications 28:951–957
    [Google Scholar]
  24. Ohki M. 1972; Correlation between metabolism of phosphatidylglycerol and membrane synthesis in Escherichia coli. Journal of Molecular Biology 68:249–264
    [Google Scholar]
  25. Poole R. K. 1977; The influence of growth substrate and capacity for oxidative phosphorylation on respiratory oscillations in synchronous cultures of Escherichia coli K12. Journal of General Microbiology 99:369–377
    [Google Scholar]
  26. Poole R. K., Chance B. 1981; The reaction of cytochrome o in Escherichia coli K12 with oxygen.Evidence for a spectrally and kinetically distinct cytochrome o in cells from oxygen-limited cultures. Journal of General Microbiology 126:277–287
    [Google Scholar]
  27. Poole R. K., Haddock B. A. 1974; Energy-linked reduction of nicotinamide adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Biochemical Journal 144:77–85
    [Google Scholar]
  28. Poole R. K., Haddock B. A. 1975; Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. Biochemical Journal 152:537–546
    [Google Scholar]
  29. Poole R. K., Waring A. J., Chance B. 1979; The reaction of cytochrome o in Escherichia coli with oxygen.Low-temperature kinetic and spectral studies. Biochemical Journal 184:379–389
    [Google Scholar]
  30. Poole R. K., Scott R. I., Chance B. 1980a; Low-temperature spectral and kinetic properties of cytochromes in Escherichia coli K12 grown at lowereu oxygen tension. Biochimica et biophysica acta 591:471–482
    [Google Scholar]
  31. Poole R. K., Blum H., Scott R. I., Collinge A., Ohnishi T. 1980b; The orientation of cytochromes in membrane multilayers prepared from aerobically grown Escherichia coli K12. Journal of General Microbiology 119:145–154
    [Google Scholar]
  32. Poole R. K., Scott R. I., Chance B. 1981a; The light-reversible binding of carbon monoxide to cytochrome in Escherichia coli K12. Journal of General Microbiology 125:431–438
    [Google Scholar]
  33. Poole R. K., Scott R. I., Blum H. 1981b; Respiratory biogenesis during the cell cycle of aerobically grown Escherichia coli K12.The accumulation of iron-sulphur clusters and their orientation in the membrane. Journal of General Microbiology 124:181–185
    [Google Scholar]
  34. Pudek M. R., Bragg P. D. 1974; Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli. Archives of Biochemistry and Biophysics 164:682–693
    [Google Scholar]
  35. Pudek M. R., Bragg P. D. 1976; Redox potentials of the cytochromes in the respiratory chain of aerobically grown Escherichia coli. Archives of Biochemistry and Biophysics 174:546–552
    [Google Scholar]
  36. Reid G. A., Ingledew W. J. 1979; Characterization and phenotypic control of the cytochrome content of Escherichia coli. Biochemical Journal 182:465–472
    [Google Scholar]
  37. Rice C. W., Hempfling W. P. 1978; Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. Journal of Bacteriology 134:115–124
    [Google Scholar]
  38. Roisin M. P., Kepes A. 1973; The membrane ATPase of Escherichia coli. II. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase. Biochimica et biophysica acta 305:249–259
    [Google Scholar]
  39. Salmon I., Poole R. K. 1980; The mitochondrial cytochromes of an unusual budding yeast, Sterigmatomyces halophilus: spectral characterization exploiting fourth-order finite difference analysis. Journal of General Microbiology 117:315–326
    [Google Scholar]
  40. Scott R. I., Poole R. K. 1980; A re-examination of the cytochromes of Escherichia coli K12 by using fourth-order finite difference analysis. Society for General Microbiology Quarterly 7:86
    [Google Scholar]
  41. Scott R. I., Gibson J. F., Poole R. K. 1980; Adenosine triphosphatase activity and its sensitivity to Ruthenium Red oscillate during the cell cycle of Escherichia coli K12. Journal of General Microbiology 120:183–198
    [Google Scholar]
  42. Scott R. I., Poole R. K., Chance B. 1981; Respiratory biogenesis during the cell cycle of aerobically grown Escherichia coli K12.The accumulation and ligand binding of cytochrome o. Journal of General Microbiology 122:255–261
    [Google Scholar]
  43. Shipp W. S. 1972; Cytochromes of Escherichia coli. Archives of Biochemistry and Biophysics 150:459–472
    [Google Scholar]
  44. Trutko S. M., Golovchenko N. P., Akhimenko V. K. 1978; Changes in the electron transport chain in Escherichia coli as a function of the conditions of culturing and phase of growth. Microbiologiya 47:5–10
    [Google Scholar]
  45. Wlmpenny J. W. T., Ranlett M., Gray C. T. 1963; Repression and derepression of cytochrome c biosynthesis in Escherichia coli. Biochimica et biophysica acta 73:170–172
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-8-1685
Loading
/content/journal/micro/10.1099/00221287-128-8-1685
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error