1887

Abstract

Cyanobacteria respond to a decrease in light intensity by reversing their direction of gliding. The sensitivity of the phototactic response in increased two- to threefold under anaerobic conditions. Light-dependent changes in the membrane potential (∆), as measured by tetraphenylphosphonium distribution, were also found to be larger in anaerobic conditions, suggesting that the photophobic response is governed by sensing of the protonmotive force (). The uncoupler carbonyl cyanide -chlorophenylhydrazone (CCCP), when added to trichomes, also evoked a phobic response in a spatial gradient assay. The extent of repulsion by different concentrations of CCCP correlated with its ability to decrease ∆. A viscous environment, exudates of an old culture, or high concentrations of Ca (plus the ionophore A23187) caused oscillatory reversals and a partial asynchronization of cells within a trichome. EGTA or CCCP in high concentrations restored synchronization. Ethionine inhibited reversals and the addition of 10 -Ca (plus A23187) restored photophobic sensitivity. A depolarizing electrical potential spread from the leading end (the ‘head’) of the trichomes following a decrease in light intensity. It is suggested that sensing of or chemoeffectors leads to a methylation-requiring step followed by a taxic signal in the form of simultaneous changes in ∆ and Ca concentration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1623
1982-07-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1623.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1623&mimeType=html&fmt=ahah

References

  1. Clayton R. K. 1958; On the interplay of environmental factors affecting taxis and motility in Rhodospirillum rubrum . Archiv für Mikrobiologie 29:189–212
    [Google Scholar]
  2. Drews G. 1959; Beiträge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen. Archiv für Protistenkunde 104:389–430
    [Google Scholar]
  3. Glagolev A. N. 1978; The proton motive force in bacterial motility and taxis. Proceedings, 12th FEBS Meeting Abstract no. 1867
    [Google Scholar]
  4. Glagolev A. N. 1980; Reception of the energy level in bacterial taxis. Journal of Theoretical Biology 82:171–185
    [Google Scholar]
  5. Glagolev A. N., Glagoleva T. N., Levin S. A., Potapova T. V., Skulachev V. P., Chailachian L. M. 1980; Transport of energy along the cyanobacterial trichome in the form of a membrane potential. Dokladi Akademii nauk SSSR 255:1490–1493
    [Google Scholar]
  6. Glagoleva T. N., Glagolev A. N., Gusev M. V., Nikitina K. A. 1980; Protonmotive force supports gliding in cyanobacteria. FEBS Letters 117:49–53
    [Google Scholar]
  7. Grinius L. L., Dangelavicius R. J., Alkimavicius G. A. 1980; Study of the membrane potential of the Bacillus subtilis and Escherichia coli cells by the penetration ions method. Biokhimia 45:1609–1618
    [Google Scholar]
  8. Häder D.-P. 1974; Participation of two photosystems in the photophobotaxis of Phormidium uncinatum . Archives of Microbiology 96:255–266
    [Google Scholar]
  9. Häder D.-P. 1975; The effect of inhibitors on the electron flow triggering photophobic reactions in Cyanophyceae. Archives of Microbiology 103:169–174
    [Google Scholar]
  10. Häder D.-P. 1977; Influence of electrical fields on photophobic reactions in blue-green algae. Archives of Microbiology 114:83–86
    [Google Scholar]
  11. Häder D.-P. 1978a; Evidence of electrical potential changes in photophobically reacting blue-green algae. Archives of Microbiology 118:115–119
    [Google Scholar]
  12. Häder D.-P. 1978b; Extracellular and intracellular determination of light-induced potential changes during photophobic reactions in blue-green algae. Archives of Microbiology 119:75–79
    [Google Scholar]
  13. Häder D.-P. 1979; Effect of inhibitors and uncouplers on light-induced potential changes triggering photophobic responses. Archives of Microbiology 120:57–63
    [Google Scholar]
  14. Hüader D.-P., Nultsch W. 1973; Negative photo-phobotactic reactions in Phormidium uncinatum . Photochemistry and Photobiology 18:311–317
    [Google Scholar]
  15. Halfen L. N., Castenholz R. W. 1971; Gliding motility in the blue-green algae Oscillatoria princeps . Journal of Phycology 7:133–145
    [Google Scholar]
  16. Hosoi S., Mochizuki N., Hayashi S., Kasai M. 1980; Control of membrane potential by external H+ concentration in Bacillus subtilis as determined by an ion-selective electrode. Biochimica et biophysica acta 600:844–852
    [Google Scholar]
  17. Khan S., Macnab R. M. 1980; The steady-state counter-clockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. Journal of Molecular Biology 138:563–597
    [Google Scholar]
  18. Kratz W. A., Myers J. 1955; Nutrition and growth of several blue-green algae. American Journal of Botany 42:282–287
    [Google Scholar]
  19. Larsen S. H., Reader R. W., Kort E. N., Tso W.-W., Adler J. 1974; Change in direction of flagellar rotation is the basis of chemotactic response in Escherichia coli . Nature, London 249:74–77
    [Google Scholar]
  20. Miller J. B., Koshland D. E. JR 1977; Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis . Proceedings of the National Academy of Sciences of the United States of America 74:4752–4756
    [Google Scholar]
  21. Murvanidze G. V., Glagolev A. N. 1981; Ca2+ ions regulate reversions in phototactically active Phormidium uncinatum and Halobacterium halobium . FEMS Microbiology Letters 12:3–6
    [Google Scholar]
  22. Nultsch W. 1962; Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen. III. Photophobotaxis von Phormidium uncinatum . Planta 58:647–663
    [Google Scholar]
  23. Nultsch W., Häder D.-P. 1979; Photomovement of motile micro-organisms. Photochemistry and Photobiology 29:423–437
    [Google Scholar]
  24. Ordal G. W. 1977; Calcium ion regulates chemotactic behaviour in bacteria. Nature, London 270:66–67
    [Google Scholar]
  25. Ordal G. W., Goldman D. J. 1975; Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis . Science 189:802–805
    [Google Scholar]
  26. Ordal G. W., Goldman D. J. 1976; Chemotactic repellents of Bacillus subtilis . Journal of Molecular Biology 100:103–108
    [Google Scholar]
  27. Ordal G. W., Villani D. P. 1980; Action of uncouplers of oxidative phosphorylation as chemotactic repellents of Bacillus subtilis . Journal of General Microbiology 118:471–478
    [Google Scholar]
  28. Schimz A., Hildebrand E. 1979; Chemosensory responses of Halobacterium halobium . Journal of Bacteriology 140:749–753
    [Google Scholar]
  29. Silverman M., Simon M. 1977; Chemotaxis in Escherichia coli: methylation of the gene products. Proceedings of the National Academy of Sciences of the United States of America 74:3317–3321
    [Google Scholar]
  30. Springer M. S., Goy M. F., Adler J. 1977; Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proceedings of the National Academy of Sciences of the United States of America 74:3312–3316
    [Google Scholar]
  31. Tso W.-W., Adler J. 1974; Negative chemotaxis in Escherichia coli . Journal of Bacteriology 119:640–642
    [Google Scholar]
  32. Walsby A. E. 1968; Mucilage secretion and the movement of blue-green algae. Protoplasma 65:223–238
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1623
Loading
/content/journal/micro/10.1099/00221287-128-7-1623
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error