1887

Abstract

Facultatively chemolithotrophic thiobacilli. 022, sp. A2, and , had ubiquinones with 10 isoprene units (Q-10) (group I). These species also had [octadecenoic acid (18:1) + cyclopropane acid of C (19)] as major non-hydroxylated fatty acids. The organisms, except , contained 3-hydroxydecanoic acid (3-OH 10:0) or 3-hydroxytetradecanoic acid (3-OH 14:0) as hydroxy fatty acids. DNA base compositions of these species were 63 to 68 mol% G + C. Other facultatively chemolithotrophic thiobacilli, including 023, and contained Q-8 (group II). They had hexadecanoic acid (16:0), [hexadecenoic acid (16:1) + cyclopropane acid of C (17)] and [18:1 + 19] as major non-hydroxylated fatty acids. The species of group II had 3-OH 10:0 and some possessed 3-hydroxydodecanoic acid (3-OH 12:0). The DNA base composition of these strains was about 65 mol% G + C. Obligate chemolithotrophic thiobacilli contained Q-8 (group III). They had 16:0, [16:1 + 17] with or without [18:1 + 19] as major non-hydroxylated fatty acids. The species of group III contained 3-OH 12:0 and some had 3-OH 10:0 when grown at neutral pH and 3-OH 14:0 in acidophilic conditions. DNA base compositions of these organisms ranged from 51 to 64 mol% G + C. Chemotaxonomic characteristics would seem to be useful for the identification and the classification of thiobacilli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1599
1982-07-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1599.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1599&mimeType=html&fmt=ahah

References

  1. Agate A. D., Vishniac W. 1973; Characterization of Thiobacillus species by gas-liquid chromatography of cellular fatty acids. Archiv für Mikrobiologie 89:257–267
    [Google Scholar]
  2. Bousfield I. J., Graham S. D. 1975 IN The National Collection of Industrial Bacteria, Catalogue of Strains, 3rd edn.. p. 28 p. 184 London: HMSO;
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of mena-quinones in actinomycetes and corynebacteria. Journal of General Microbiology 100:221–230
    [Google Scholar]
  4. Collins M. D., Goodfellow M., Minnikin D. E. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. Journal of General Microbiology 110:127–136
    [Google Scholar]
  5. Collins M. D., Goodfellow M., Minnikin D. E. 1980; Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curto-bacterium and related taxa. Journal of General Microbiology 118:29–37
    [Google Scholar]
  6. Cook T. M., Umbreit W. W. 1963; The occurrence of cytochrome and coenzyme Q in Thiobacillus thiooxidans . Biochemistry 2:194–196
    [Google Scholar]
  7. Gherna R. L., Pienta P. 1980; Media. In The American Type Culture Collection. Catalogue of Strains I, 14th edn.. pp. 511–559 Hatt H. D., Gantt M. J., Piper J. Edited by Rockville: American Type Culture Collection;
    [Google Scholar]
  8. Guay R., Silver M. 1974; Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Canadian Journal of Microbiology 21:281–288
    [Google Scholar]
  9. Hancock I. C., Humphreys G. O., Meadow P. M. 1970; Characterisation of the hydroxy acids of Pseudomonas aeruginosa 8602. Biochimica et biophysica acta 202:389–391
    [Google Scholar]
  10. Hofmann K., Liu T. Y. 1960; Lactobacillic acid biosynthesis. Biochimica et biophysica acta 37:364–365
    [Google Scholar]
  11. Hutchinson M., Johnstone K. I., White D. 1965; The taxonomy of certain thiobacilli. Journal of General Microbiology 41:357–366
    [Google Scholar]
  12. Hutchinson M., Johnstone K. I., White D. 1966; Taxonomy of the acidophilic thiobacilli. Journal of General Microbiology 44:373–381
    [Google Scholar]
  13. Hutchinson M., Johnstone K. I., White D. 1967; Taxonomy of anaerobic thiobacilli. Journal of General Microbiology 47:17–23
    [Google Scholar]
  14. Hutchinson M., Johnstone K. I., White D. 1969; Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. Journal of General Microbiology 57:397–410
    [Google Scholar]
  15. Ikemoto S., Kuraishi H., Komagata K., Azuma R., Suto T., Murooka H. 1978; Cellular fatty acid composition in Pseudomonas species. Journal of General and Applied Microbiology 24:199–213
    [Google Scholar]
  16. Jackson J. F., Moriarty D. J. W., Nicholas D. J. D. 1968; Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. Journal of General Microbiology 53:53–60
    [Google Scholar]
  17. James A. T., Martin A. J. P. 1956; Gas-liquid chromatography: the separation and identification of the methyl esters of saturated and unsaturated acids from formic acid to n-octadecanoie acid. Biochemical Journal 63:144–152
    [Google Scholar]
  18. Katayama Y., Kuraishi H. 1978; Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Canadian Journal of Microbiology 24:804–810
    [Google Scholar]
  19. Katayama-Fujimura Y., Kuraishi H. 1980; Characterization of Thiobacillus novellus and its thiosulfate oxidation. Journal of General and Applied Microbiology 26:357–367
    [Google Scholar]
  20. Key B. A., Gray G. W., Wilkinson S. G. 1970; The purification and chemical composition of the lipopolysaccharide of Pseudomonas alcaligenes . Biochemical Journal 120:559–566
    [Google Scholar]
  21. Knoche H. W., Shively J. M. 1972; The structure of an ornithine-containing lipid from Thiobacillus thiooxidans . Journal of Biological Chemistry 247:170–178
    [Google Scholar]
  22. Koeltzow D. E., Conrad H. E. 1971; Structural heterogeneity in the lipopolysaccharide of Aerobacter aerogenes NCTC 243. Biochemistry 10:214–224
    [Google Scholar]
  23. Law J. H., Zalkin H., Kaneshiro T. 1963; Transmethylation reactions in bacterial lipids. Biochimica et biophysica acta 70:143–151
    [Google Scholar]
  24. Lee K. Y., Wahl R., Barbu E. 1956; Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries. Annales de l’Institut Pasteur 91:212–224
    [Google Scholar]
  25. Levin R. A. 1971; Fatty acids of Thiobacillus thiooxidans . Journal of Bacteriology 108:992–995
    [Google Scholar]
  26. Levin R. A. 1972; Effect of cultural conditions on the fatty acid composition of Thiobacillus novellus . Journal of Bacteriology 112:903–909
    [Google Scholar]
  27. London J. 1963; Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Archiv für Mikrobiologie 46:329–337
    [Google Scholar]
  28. London J., Ritenberg S. C. 1967; Thiobacillus perometabolis nov. sp., a non-autotrophic thiobacillus. Archiv für Mikrobiologie 59:218–225
    [Google Scholar]
  29. Markosyan G. E. 1973; A new mixotrophic sulfur bacterium developing in acid media, Thiobacillus organoparus sp.n. Doklady Akademii nauk SSSR 211:1205–1208 in Russian
    [Google Scholar]
  30. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  31. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  32. Mizoguchi T., Sato T., Okabe T. 1976; New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. Journal of Fermentation Technology 54:181–191
    [Google Scholar]
  33. Moss C. W., Samuels S. B., Liddle J., Mckinney R. M. 1973; Occurrence of branched-chain hydroxy fatty acids in Pseudomonas maltophilia . Journal of Bacteriology 114:1018–1024
    [Google Scholar]
  34. Muraca R.F.., Whittick J. S., Daves G. D. Jr Friis P., Folkers K. 1967; Mass spectra of ubiquinones and ubiquinols. Journal of the American Chemical Society 89:1505–1508
    [Google Scholar]
  35. Myers P. S., Millar W. N. 1975; Nonautotrophic Thiobacillus in acid mine water. Applied Microbiology 30:884–886
    [Google Scholar]
  36. O’Leary W. M. 1959; Studies of the utilization of C14-labeled octadecenoic acids by Lactobacillus arabinosus . Journal of Bacteriology 77:367–373
    [Google Scholar]
  37. Short S. A., White D. C., Aleem M. I. H. 1969; Phospholipid metabolism in Ferrobacillus ferrooxidans . Journal of Bacteriology 99:142–150
    [Google Scholar]
  38. Silverman M. P., Lundgren D. G. 1959; Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology 72:642–647
    [Google Scholar]
  39. Starkey R. L. 1935; Isolation of some bacteria which oxidize thiosulfate. Soil Science 39:197–219
    [Google Scholar]
  40. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus . Journal of Bacteriology 100:487–497
    [Google Scholar]
  41. Uchida K., Mogi K. 1972; Cellular fatty acid spectra of Pediococcus species in relation to their taxonomy. Journal of General and Applied Microbiology 18:109–129
    [Google Scholar]
  42. Urakami T., Komagata K. 1979; Cellular fatty acid composition and coenzvme Q system in gram-negative methanol-utilizing bacteria. Journal of General and Applied Microbiology 25:343–360
    [Google Scholar]
  43. Vishniac W. V. 1974; Genus Thiobacillus . In Bergey’s Manual of Determinative Bacteriology, 8th edn.. pp. 456–461 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  44. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriological Reviews 21:195–213
    [Google Scholar]
  45. Waksman S. A. 1922; Microorganisms concerned in the oxidation of sulfur in the soil. V. Bacteria oxidizing sulfur under acid and alkaline conditions. Journal of Bacteriology 7:609–616
    [Google Scholar]
  46. Yamada Y., Aida K., Uemura T. 1969; Enzymatic studies on the oxidation of sugar and sugar alcohol V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called intermediate strains. Journal of General and Applied Microbiology 15:181–196
    [Google Scholar]
  47. Yamada Y., Inouye G., Tahara Y., Kondo K. 1976a; The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. Journal of General and Applied Microbiology 22:203–214
    [Google Scholar]
  48. Yamada Y., Nakazaya E., Nazaki A., Kondo K. 1976b; Characterization of Acetobacter xvlinum by ubiquinone system. Journal of General and Applied Microbiology 22:285–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1599
Loading
/content/journal/micro/10.1099/00221287-128-7-1599
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error