1887

Abstract

utilized -coumaryl alcohol, one of the major constituents of lignin, as sole carbon source. The following compounds were isolated from the growth medium and identified by means of their melting points, IR, NMR and mass spectra: -coumaric acid, -hydroxybenzoic acid and protocatechuic acid. Culture filtrates from mycelium grown on -[1-C]coumaryl alcohol contained -[C]coumaric acid, β-hydroxy-(-hydroxyphenyl)[C]propionic acid, (-hydroxybenzoyl)[C]acetic acid and [C]acetic acid. Oxidation of protocatechuic acid by crude cell-free extracts formed -ketoadipic acid, which was isolated and characterized.

A pathway for the degradation of -coumaryl alcohol by is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1473
1982-07-01
2021-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1473.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1473&mimeType=html&fmt=ahah

References

  1. Allen C. F. H., Byers J. R. 1949; A synthesis of coniferyl alcohol and coniferyl benzoate. Journal of the American Chemical Society 71:2683–2684
    [Google Scholar]
  2. Ander P., Eriksson K-E. 1978; Lignin degradation and utilization by microorganisms. Progress in Industrial Microbiology 14:1–58
    [Google Scholar]
  3. Cain R. B., Bilton R. F., Darrah J. A. 1968; The metabolism of aromatic acids by microorganisms. Biochemical Journal 108:797–828
    [Google Scholar]
  4. Cowling E. B. 1961; Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. U.S. Department of Agriculture Technical Bulletin No. 1258:
    [Google Scholar]
  5. Darrah J. A., Cain R. B. 1967; A convenient biological method for preparing β-keto-adipic acid. Laboratory Practice 16:989–990
    [Google Scholar]
  6. Dart R. K. 1975; Long chain fatty acids in spores of Penicillium . Transactions of the British Mycological Society 65:312–315
    [Google Scholar]
  7. Evans W. C. 1947; Oxidation of phenol and benzoic acid by some soil bacteria. Biochemical Journal 41:373–382
    [Google Scholar]
  8. French C. J., Vance C. P., Towers G. H. N. 1976; Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extracts of potato tubers and Polyporus hispidus . Phytochemistry 15:564–566
    [Google Scholar]
  9. Freundenberg K., Neish A. C. 1968 Constitution and Biosynthesis of Lignin. Berlin: Springer-Verlag;
    [Google Scholar]
  10. Fukuzumi T. 1980; Microbial metabolism of lignin-related aromatics. In Lignin Biodegradation II pp. 73–94 Kirk T. K., Higuchi T., Chang H.-m. Edited by Boca Raton, Florida:: C.R.C. Press.;
    [Google Scholar]
  11. Hauser C. R., Breslow D. S. 1955; Ethyl-β-phenyl-β-hydroxypropionate. In Organic Syntheses Collective 3 pp. 408–410 Horning E. C. Edited by London: Wiley;
    [Google Scholar]
  12. Henderson M. E. K. 1961; Metabolism of aromatic compounds related to lignin. Journal of General Microbiology 26:155–165
    [Google Scholar]
  13. Henderson M. E. K., Farmer V. C. 1955; Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. Journal of General Microbiology 12:37–46
    [Google Scholar]
  14. Higuchi T. 1971; Formation and biological degradation of lignin. Advances in Enzymology 34:207–283
    [Google Scholar]
  15. Kawakami H. 1976; Bacterial degradation of lignin. Mokuzai Gakkaishi 22:252–257
    [Google Scholar]
  16. Kawakami H. 1980; Degradation of lignin-related aromatics and lignins by several pseudomonads. In Lignin Biodegradation II pp. 103–125 Kirk T. K., Higuchi T., Chang H.-m. Edited by Boca Raton, Florida: C.R.C. Press.;
    [Google Scholar]
  17. Kindl H., Ruis H. 1977; Subcellular distribution of p-hydroxybenzoic acid formation in castor bean endosperm. Zeitschrift für Naturforschung 268:1379–1380
    [Google Scholar]
  18. Kirk T. K. 1971; Effects of micro-organisms on lignin. Annual Review of Phytopathology 9:185–210
    [Google Scholar]
  19. Lapworth A., Mcrae J. A. 1922; Syntheses of alkylidenecyanoacetic acids and of substituted succinic acids. Journal of the Chemical Society 121:1699–1712
    [Google Scholar]
  20. Li L., Elliot W. H. 1952; Synthesis of 2-methyl-l,4-naphtho-quinone-4-C14 . Journal of the American Chemical Society 74:4089–4090
    [Google Scholar]
  21. Liu C., Johnson M. J. 1971; Alkane oxidation by a particulate preparation from Candida . Journal of Bacteriology 106:830–834
    [Google Scholar]
  22. Oglesby R. T., Christman R. F., Driver C. H. 1967; The biotransformation of lignin to humus-facts and postulates. Advances in Applied Microbiology 9:171–184
    [Google Scholar]
  23. Perrin P. W., Towers G. H. N. 1973; Metabolism of aromatic acids by Polyporus hispidus . Phytochemistry 12:583–587
    [Google Scholar]
  24. Ratledge C. 1978; Degradation of aliphatic hydrocarbons. In Developments in the Biodegradation of Hydrocarbons, I pp. 1–46 Watkinson R. J. Edited by London: Applied Science Publishers.;
    [Google Scholar]
  25. Reio L. 1958; A method for the paper chromatographic separation and identification of phenol derivatives, mold metabolites and related compounds of biochemical interest using a reference system. Journal of Chromatography 1:338–363
    [Google Scholar]
  26. Riegel B., Lilienfeld W. M. 1945; The synthesis of β-keto-esters by the decomposition of acylated malonic esters. Journal of the American Chemical Society 67:1273–1275
    [Google Scholar]
  27. Rothera A. C. H. 1908; Note on the sodium nitroprusside reaction for acetone. Journal of Physiology 37:491–494
    [Google Scholar]
  28. Sistrom W. R., Stanier R. Y. 1953; The mechanism of catechol oxidation by Mycobacterium butyricum . Journal of Bacteriology 66:404–406
    [Google Scholar]
  29. Smith I. 1960 Chromatographic and Electrophoretic Techniques I, 2nd edn. pp. 291–298 London:: Heinemann;
    [Google Scholar]
  30. Stanier R. Y., Ornston L. N. 1973; β-Ketoadipate pathway. Advances in Microbial Physiology 9:89–151
    [Google Scholar]
  31. Stickland L. H. 1951; The determination of small quantities of bacteria by means of the biuret reaction. Journal of General Microbiology 5:698–703
    [Google Scholar]
  32. Sundman V. 1964; The ability of α-coridendrin-decomposing Agrobacterium strains to utilize other lignans and lignin related compounds. Journal of General Microbiology 36:185–201
    [Google Scholar]
  33. Toms A., Wood J. M. 1970; The degradation of trans-ferulic acid by Pseudomonas acidivorans . Biochemistry 9:337–343
    [Google Scholar]
  34. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric Techniques, 4th edn. p. 1 Minneapolis:: Burgess Publishing Co;
    [Google Scholar]
  35. Vollmer K. O, Reisener H. J., Grisebach H. 1965; The formation of acetic acid from p-hydroxycinnamic acid during its degradation to β-hydroxy benzoic acid in wheat shoots. Biochemical and Biophysical Research Communications 21:221–225
    [Google Scholar]
  36. Zenk M. H., Muller G. 1964; Biosynthese von p-hydroxybenzoesaure und anderer Benzoesauren in hoheren Pflanzen. Zeitschrift für Naturforschung 196:398–405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1473
Loading
/content/journal/micro/10.1099/00221287-128-7-1473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error