Production and Tolerance of Ethanol in Relation to Phospholipid Fatty-acyl Composition in NCYC 431 Free

Abstract

Accumulation of ethanol in supernatants from anaerobic cultures of NCYC 431 closely paralleled growth during the early exponential phase of batch growth, and continued after growth had ceased. During the 8–64 h period of the fermentation, the intracellular ethanol concentration was greater than the extracellular concentration. Ethanol was very rapidly extracted from organisms by washing with water. During growth up to 32 h, there was a progressive decrease in fatty-acyl unsaturation in phospholipids, and a corresponding proportional increase in saturation. Thereafter, the trend was very slightly reversed. Supplementing cultures with ethanol (0·5 or 1·0 ) after 8h incubation retarded growth rate, while supplementation with 1·5 -ethanol immediately stopped growth. In cultures supplemented with 0·5 or 1·0 -ethanol, viability was not lowered, but supplementation with 1·5 -ethanol caused a rapid decline in viability. Supplementation of cultures with ethanol at any of the three concentrations led to an increase in the proportion of mono-unsaturated fatty-acyl residues in cellular phospholipids, especially in C residues, which was accompanied by a decrease in the proportion of saturated residues.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1447
1982-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1447.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1447&mimeType=html&fmt=ahah

References

  1. Alterthum F., Rose A. H. 1973; Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acids. Journal of General Microbiology 77:371–382
    [Google Scholar]
  2. Atkinson D. E. 1969; Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. Current Topics in Cellular Regulation 1:29–43
    [Google Scholar]
  3. Augustin H. W., Kopperschläger G., Steffen H., Hofmann E. 1965; Hexokinase alsbegrenzender Faktor des anaerobenGlucoseverbrauches von Saccharomyces carlsbergensis NCYC 74. Biochimica et biophysica acta 110:437–439
    [Google Scholar]
  4. Bloomfield D., Bloch K. 1958; The role of oxygen in the biosynthesis of unsaturated fatty acids. Biochimica et biophysica acta 30:220–221
    [Google Scholar]
  5. Chester V. E. 1963; The dissimilation of the carbohydrate reserves of a strain of Saccharomyces cerevisiae . Biochemical Journal 86:153–160
    [Google Scholar]
  6. Chester V. E. 1964; Comparative studies on the dissimilation of reserve carbohydrate in four strains of Saccharomyces cerevisiae . Biochemical Journal 92:318–323
    [Google Scholar]
  7. Cohn E. J., Gurd F. R. N., Surgenor D. M., Barnes B. A., Brown R. K., Derouaex G., Gillespie J. M., Kahnt F. W., Lever W. F., Liu C. H., Mittelman D., Mouton R. F., Schmid K., Uroma E. 1950; A system for the separation of the components of human blood: quantitative procedures for the separation of the protein components of human plasma. Journal of the American Chemical Society 72:465–474
    [Google Scholar]
  8. Fink H., Kühles R. 1933; Beiträge zur Methylen-blaufärbung der Hefezellmembran. II. Mitteilung. Eineverbesserte Färbeflüssigkeit zur Erkennung von toten Hefezellen. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 218:65–66
    [Google Scholar]
  9. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226:497–509
    [Google Scholar]
  10. Fraenkel D. G. 1981; The biochemical genetics of glycolysis in microbes. In Trends in the Biology of Fermentations for Fuels and Chemicals pp. 201–215 Edited by Hollaender A., Rabson P., Rogers P., San Pietro A., Valentine R., Wolfe R. New York: Plenum Press;
    [Google Scholar]
  11. Ghose T. K., Tyagi R. D. 1979; Rapid ethanol fermentation of cellulose hydrolysate. 1. Batch versus continuous systems. Biotechnology and Bioengineering 21:1387–1400
    [Google Scholar]
  12. Goma G., Moreno M., Strehaiano P. 1981; Mechanism of inhibition during alcohol fermentation in strict anaerobiosis. In Proceedings of the Symposium on Bioconversion and Bioengineering pp. 97–112 Edited by Ghose T. K. New Delhi: Indian Institue of Technology;
    [Google Scholar]
  13. Green D. E., Murer E., Hultin H. O., Richardson S. H., Salmon B., Brierley G. P., Baum H. 1965; Association of integrated metabolic pathways with membranes. 1. Glycolytic enzymes of the red blood corpuscle and yeast. Archives of Biochemistry and Biophysics 122:635–647
    [Google Scholar]
  14. Hinshelwood C. N. 1953; Autosynthesis. Journal of the Chemical Society 4:1947–1956
    [Google Scholar]
  15. Holzberg I., Finn R. K., Steinkraus K. H. 1967; A kinetic study of the alcoholic fermentation of grape juice. Biotechnology and Bioengineering 9:413–427
    [Google Scholar]
  16. Ingram L. O. 1976; Adaptation of membrane lipids to alcohols. Journal of Bacteriology 125:670–678
    [Google Scholar]
  17. Jollow D., Kellerman G. M., Linnane A. W. 1968; The biogenesis of mitochondria. II. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. Journal of Cell Biology 37:221–230
    [Google Scholar]
  18. Kates M., Hagen P.-O. 1964; Influence of temperature on fatty acid composition of psy-chrophilic and mesophilic Serratia spp. Canadian Journal of Biochemistry 42:481–488
    [Google Scholar]
  19. Keenan M. H. J. 1981 Solute transport and plasma-membrane lipid composition in Saccharomyces cerevisiae NCYC 366. Ph.D. thesis: University of Bath; pp. 115–117
    [Google Scholar]
  20. Mowbray J., Moses V. 1976; The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity. European Journal of Biochemistry 66:25–36
    [Google Scholar]
  21. Nagodawithana T. W., Steinkraus K. H. 1976; Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in ‘rapid fermentation’. Applied and Environmental Microbiology 31:158–162
    [Google Scholar]
  22. Nagodawithana T. W., Whitt J. T., Cutaia A. J. 1977; Study of the feedback effect of ethanol on selected enzymes of the glycolytic pathway. Journal of the American Society of Brewing Chemists 35:179–183
    [Google Scholar]
  23. Nandini-Kishore S. G., Mattox S. M., Martin C. E., Thompson G. A. 1979; Membrane changes during growth of Tetrahymena in the presence of ethanol. Biochimica et biophvsica acta 551:315–327
    [Google Scholar]
  24. Navarro J. M., Durand G. 1978; Fermentation alcoolique: influence de la température sur l’accumulation d’alcool dans les cellules de levure. Annales de Microbiologie 129B:215–224
    [Google Scholar]
  25. Panchal P. J., Stewart G. G. 1980; The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain. Journal of the Institute of Brewing 86:207–210
    [Google Scholar]
  26. Pasteur L. 1879 Studies on Fermentation (translated by F. Faulkner) London: MacMillan;
    [Google Scholar]
  27. Postgate J. R. 1969; Viable counts and viability. Methods in Microbiology 1:611–628
    [Google Scholar]
  28. Rose A. H. 1980; Recent research on industrially important strains of Saccharomyces cerevisiae . In Biology and Activities of Yeasts pp. 103–189 Edited by Skinner F. A., Passmore S. M., Davenport R. R. London: Academic Press;
    [Google Scholar]
  29. Rose A. H., Beavan M. J. 1981; End-product tolerance and ethanol. In Trends in the Biology of Fermentations for Fuels and Chemicals pp. 513–531 Edited by Hollaender A., Rabson R., Rogers P., San Pietro A., Valentine R., Wolfe R. New York: Plenum Press;
    [Google Scholar]
  30. Rothstein A. 1972; Ion transport in microorganisms. In Metabolic Pathways 6 pp. 17–39 Edited by Hopkin L. E. New York: Academic Press;
    [Google Scholar]
  31. Rothstein A., Jennings D. H., Demis C., Bruce M. 1959; The relationship of fermentation to cell structure in yeast. Biochemical Journal 71:99–106
    [Google Scholar]
  32. Sols A., Marco R. 1970; Concentrations of metabolites and binding sites.Implications in metabolic regulation. Current Topics in Cellular Regulation 2:227–273
    [Google Scholar]
  33. Sols A., Gancedo C., De La Fuente G. 1971; Energy-yielding metabolism in yeasts. In The Yeasts 2 pp. 271–307 Edited by Rose A. H., Harrison J. S. London: Academic Press;
    [Google Scholar]
  34. Thomas D. S., Rose A. H. 1979; Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Archives of Microbiology 122:49–55
    [Google Scholar]
  35. Thomas D. S., Hossack J. A., Rose A. H. 1978; Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae . Archives of Microbiology 117:239–245
    [Google Scholar]
  36. Wickerham L. J. 1951; Taxonomy of yeasts. I. Techniques of classification. United States Department of Agriculture Technical Bulletin no. 1029 Washington, D.C.: U.S. Department of Agriculture;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1447
Loading
/content/journal/micro/10.1099/00221287-128-7-1447
Loading

Data & Media loading...

Most cited Most Cited RSS feed