1887

Abstract

A survey of the occurrence of a number of enzymes possibly involved in the C dissimilatory pathway in organisms using the serine pathway of carbon assimilation indicated that neither the methanol dehydrogenase nor the NH -independent dye-linked formaldehyde dehydrogenase had a specific role in the oxidation of formaldehyde. Conversely, the activities of enzymes involved in the methenyl-THF pathway were shown to be induced during growth on methanol or methylamine, suggesting a potential dissimilatory role for this pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1441
1982-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1441.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1441&mimeType=html&fmt=ahah

References

  1. Anthony C., Zatman L. J. 1964; The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M27. Biochemical Journal 92:614–621
    [Google Scholar]
  2. Attwood M. M., Harder W. 1978; Formate assimilation of Hyphomicrobium X. FEMS Microbiology Letters 3:111–114
    [Google Scholar]
  3. Eady R. R., Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochemical Journal 106:245–255
    [Google Scholar]
  4. Edwards V. H., Gottschalk M. J., Noojin A. Y., Tuthill L. B., Tannahill A. L. 1970; Extended culture: the growth of Candida utilis at controlled acetate concentrations. Biotechnology and Bioengineering 12:975–999
    [Google Scholar]
  5. Greenberg D. M. 1971; N 5 N 10-Methenyltetra-hydrofolate cyclohydrolase. Methods of Enzymology 18b:789–792
    [Google Scholar]
  6. Heptinstall J., Quayle J. R. 1970; Pathways to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochemical Journal 117:563–572
    [Google Scholar]
  7. Johnson P. A., Quayle J. R. 1964; Microbial growth on C1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AM1. Biochemical Journal 93:281–290
    [Google Scholar]
  8. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Zeitschrift für analytische Chemie 260:8–10
    [Google Scholar]
  9. Large P. J., Quayle J. R. 1963; Microbial growth on C1 compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochemical Journal 87:383–396
    [Google Scholar]
  10. Large P. J., Peel D., Quayle J. R. 1961; Microbial growth on C1 compounds. 2. Synthesis of cell constituents by methanol-and formate-grown Pseudomonas AM1, and methanol-grown Hyphomicrobium vulgare . Biochemical Journal 81:470–479
    [Google Scholar]
  11. Large P. J., Eady R. R., Murden D. J. 1969; The enzymic method for the micro estimation of methylamine, ethylamine, and n-propylamine. Analytical Biochemistry 32:402–407
    [Google Scholar]
  12. Marison I. W., Attwood M. M. 1980; Partial purification and characterization of a dye-linked formaldehyde dehydrogenase from Hyphomicrobium X. Journal of General Microbiology 117:305–313
    [Google Scholar]
  13. Mehta R. J. 1973; Studies on methanol-oxidizing bacteria II. Purification and properties of methanol dehydrogenase from Pseudomonas RJ1. Antonie van Leeuwenhoek 39:303–312
    [Google Scholar]
  14. Mehta R. J. 1975; A novel inducible formaldehyde dehydrogenase of Pseudomonas sp. RJ1. Antonie van Leeuwenhoek 41:89–95
    [Google Scholar]
  15. Monod J., Pappenheimer A. M. Jr Cohen-Bazire G. 1952; La cinétique de la biosynthèse de la β-galactosidase chez E. coli considérée comme fonction de la croissance. Biochimica et biophysica acta 9:648–660
    [Google Scholar]
  16. O’Brien W. E., Brewer J. M., Ljungdahl L. G. 1973; Purification and characterisation of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum . Journal of Biological Chemistry 248:403–408
    [Google Scholar]
  17. O’Connor M. L., Wopat A. E., Hanson R. S. 1977; Genetic transformation in Methylobacterium organophilum . Journal of General Microbiology 98:265–272
    [Google Scholar]
  18. Patel R. N., Hoare D. S. 1971; Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C1 compounds by Methylococcus capsulatus . Journal of Bacteriology 107:187–192
    [Google Scholar]
  19. Rabinowitz J. C., Pricer W. E. 1958; Crystallization of tetrahydrofolate formylase. Federation Proceedings 17:293
    [Google Scholar]
  20. Rabinowitz J. C., Pricer W. E. 1963; Formyl tetrahydrofolate synthetase. Methods in Enzymology 6:375–379
    [Google Scholar]
  21. Scrimgeour K. G., Huennekens F. M. 1963; N 5,N 10-Methylenetetrahydrofolic dehydrogenase. Methods in Enzymology 6:368–372
    [Google Scholar]
  22. Stirling D. I., Dalton H. 1978; Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus(Bath). Journal of General Microbiology 107:19–29
    [Google Scholar]
  23. Van Dijken J. P., Otto R., Harder W. 1975; Oxidation of methanol, formaldehyde and formate by catalase purified from methanol-grown Hansenula polymorpha . Archives of Microbiology 106:221–226
    [Google Scholar]
  24. Whiteley H. R., Huennekens F. M. 1962; Mechanism of the reaction catalyzed by the formateactivating enzyme from Micrococcus aerogenes . Journal of Biological Chemistry 237:1290–1297
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1441
Loading
/content/journal/micro/10.1099/00221287-128-7-1441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error