1887

Abstract

The mode of action of colicin S8 has been studied and compared with that of other colicins. Two minutes after the addition of colicin S8 to bacteria a considerable proportion of the colicin is inaccessible to trypsin. Treatment of bacteria with colicin S8 renders them more sensitive to lysis by sodium dodecyl sulphate and also inhibits motility. Like colicins K and E1, colicin S8 provokes lysis of bacteria superinfected with bacteriophage T4. Colicin S8, unlike colicin E2, prevents replication of bacteriophage T4. The incorporation of isoleucine or uracil into bacteria is inhibited by colicin S8 but, unlike colicins K and E1, the effect is multiplicity-dependent. A rapid method of titration of colicin S8 is described. The results are discussed with emphasis on the possible rearrangements at the bacterial surface and the possibility that there is more than one type of specific receptor for colicin S8.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-5-973
1982-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/5/mic-128-5-973.html?itemId=/content/journal/micro/10.1099/00221287-128-5-973&mimeType=html&fmt=ahah

References

  1. Antón D. N. 1964 Thesis, Universidad de Buenos Aires, Argentina:
  2. Bowman C. M., Dahlberg J. E., Ikemura T., Konisky J., Nomura M. 1971; Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proceedings of the National Academy of Sciences of the United States of America 68:964–968
    [Google Scholar]
  3. Buxton R. S., Holland I. B. 1974; Colicin E2 induced DNA solubilization in a mutant of E. coli deficient in endonuclease I. FEBS Letters 39:1–3
    [Google Scholar]
  4. Cavard D. 1976; Sensitization of colicin K-treated bacteria by sodium dodecyl sulphate: presence of free colicin in colicin K-treated cultures of E. coli. Antimicrobial Agents and Chemotherapy 9:639–645
    [Google Scholar]
  5. Cavard D., Polonovski J., Barbu E. 1967; Modifications du metabolisme des phospholipides de E. coli, consecutives à l’action de la colicine K. Compte rendu hebdomadaire des séances de l’Académie des sciences D265:1851–1854
    [Google Scholar]
  6. Cavard D., Marotel-Schirmann J., Barbu E. 1971; Reversion de la fixation des colicines. Compte rendu hebdomadaire des séances de l’Academie des sciences D273:1167–1170
    [Google Scholar]
  7. Cavard D., Vallée M., Barbu E. 1974; Mise en evidence par le LS de quelques modifications précoces de la membrane de E. coli provoquees par les phages T4, les fantomes de phages T4 et la colicine K. Biochimie 56:221–230
    [Google Scholar]
  8. Cramer W. A., Phillips S. K., Keenan T. W. 1973; On the role of membrane phase in the transmission mechanism of colicin E1. Biochemistry> 12:1177–1181
    [Google Scholar]
  9. Dankert J., Hammond S. M., Cramer W. A. 1980; Reversal by trypsin of the inhibition of active transport by colicin E1. Journal of Bacteriology 143:594–602
    [Google Scholar]
  10. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  11. Fields K. L., Luria S. E. 1969; Effects of colicins E1 and K on cellular metabolism. Journal of Bacteriology 97:64–77
    [Google Scholar]
  12. Harold F. M. 1977; Membranes and energy transduction in bacteria. Current Topics in Bioenergetics 6:83–149
    [Google Scholar]
  13. Kadner R. J., Mcelhaney J. 1980; Other membrane-dependent transport systems in Escherichia coli. Effect of repression or cessation of colicin receptor synthesis on colicin receptor activities. Journal of Bacteriology 143:135–141
    [Google Scholar]
  14. Kadner R. J., Bassford P. J. Jr Pugsley A. P. 1979; Colicin receptors and the mechanisms of colicin uptake. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene (I Abteilung, Originate A) 244:90–104
    [Google Scholar]
  15. Kayalar C., Luria S. E. 1979; Channel formation by colicin K on liposomes. Bacteriological Proceedings 6:297–306
    [Google Scholar]
  16. Kennedy C. K. 1971; Induction of colicin production by high temperature of inhibition of protein synthesis. Journal of Bacteriology 108:10–19
    [Google Scholar]
  17. Mindich K. 1970; Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. Journal of Molecular Biology 49:433–439
    [Google Scholar]
  18. Mukai F., Streisinger G., Miller B. 1967; The mechanism of lysis in phage T4-infected cells. Virology 33:398–404
    [Google Scholar]
  19. Nágel De Zwaig R. 1969; Mode of action of colicin A. Journal of Bacteriology 99:913–914
    [Google Scholar]
  20. Nágel De Zwaig R., Vitelli-Flores J. 1973; Mode of action of a new colicin. FEBS Letters 29:318–322
    [Google Scholar]
  21. Nomura M. 1963; Mode of action of colicines. Cold Spring Harbor Symposia on Quantitative Biology 28:315–324
    [Google Scholar]
  22. Plate C. A., Luria S. E. 1972; Stages in colicin K action, as revealed by the action of trypsin. Proceedings of the National Academy of Sciences of the United States of America 69:2030–2034
    [Google Scholar]
  23. Reeves P. 1972 The Bacteriocins Berlin: Springer-Verlag;
    [Google Scholar]
  24. Smarda J. 1975; Novel approaches to the mode of action of colicins. Folia microbiologica 20:264–271
    [Google Scholar]
  25. Tokuda H., Konisky J. 1979; Effect of colicins la and El on ion permeability of liposomes. Proceedings of the National Academy of Sciences of the United States of America 76:6167–6171
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-5-973
Loading
/content/journal/micro/10.1099/00221287-128-5-973
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error