Thermotactic Behaviour of Slug Phototaxis Mutants Free

Abstract

By isolating phototactic mutants also impaired in thermotaxis we have confirmed that the photosensory and thermosensory transduction pathways converge in slugs. Novel features of behaviour of the mutant slugs, normally obscured in ‘wild type’ strains, are the extreme bimodal distribution of directions travelled during phototaxis, and the presence of a second transition from positive to negative thermotaxis at high temperature during migration in thermal gradients. The novel behaviours result from quantitative changes in the transition temperatures during thermotaxis and the preferred angles of deviation (±α) from the direction of the light source during phototaxis. The mutant slugs orient with reduced accuracy in both phototaxis and thermotaxis. These behaviour patterns are consistent with the outcome of mutations impairing signal processing after convergence of photosensory and thermosensory transduction pathways but before adaptation processes operate to set both the preferred directions in bidirectional phototaxis and the transition temperatures in thermotaxis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-5-965
1982-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/5/mic-128-5-965.html?itemId=/content/journal/micro/10.1099/00221287-128-5-965&mimeType=html&fmt=ahah

References

  1. Bonner J. T., Whitfield F. E. 1965; The relation of sorocarp size to phototaxis in the cellular slime mold Dictyostelium purpureum . Biological Bulletin 128:51–57
    [Google Scholar]
  2. Bonner J. T., Clarke W. W., Neeley C. L., Slifkin M. K. 1950; The orientation to light and the extremely sensitive orientation to temperature gradients in the slime mold Dictyostelium discoideum . Journal of Cellular and Comparative Physiology 36:149–158
    [Google Scholar]
  3. Fisher P. R., Williams K. L. 1981a; Bidirectional phototaxis by Dictyostelium discoideum slugs. FEMS Microbiology Letters 12:87–89
    [Google Scholar]
  4. Fisher P. R., Williams K. L. 1981b; Activated charcoal and orientation behaviour by Dictyostelium discoideum slugs. Journal of General Microbiology 126:519–523
    [Google Scholar]
  5. Fisher P. R., Smith E., Williams K. L. 1981; An extracellular chemical signal controlling phototactic behaviour by D. discoideum slugs. Cell 23:799–807
    [Google Scholar]
  6. Forward R. B. 1976; Light and diurnal vertical migration: photobehaviour and photophysiology of plankton. Photochemical and Photobiological Reviews 1:157–209
    [Google Scholar]
  7. Francis D. W. 1964; Some studies on phototaxis of Dictyostelium . Journal of Cellular and Comparative Physiology 64:131–138
    [Google Scholar]
  8. Häder D. P., Poff K. L. 1979a; Light-induced accumulations of Dictyostelium discoideum amoebae. Photochemistry and Photobiology 29:1157–1162
    [Google Scholar]
  9. HäDer D. P., Poff K. L. 1979b; Photodispersal from light traps by amebas of Dictyostelium discoideum . Experimental Mycology 3:121–131
    [Google Scholar]
  10. Hazelbauer G. L. editor 1978 Taxis and Behaviour London: Chapman & Hall;
    [Google Scholar]
  11. Hedgecock E. M., Russell R. L. 1975; Normal and mutant thermotaxis in the nematode Caenorhabditis elegans . Proceedings of the National Academy of Sciences of the United States of America 724061–4065
    [Google Scholar]
  12. Hennessey T., Nelson D. L. 1979; Thermosensory behaviour in Paramecium tetraurelia: a quantitative assay and some factors that influence thermal avoidance. Journal of General Microbiology 112:337–347
    [Google Scholar]
  13. Hong C. B., Häder M. A., Häder D. P., Poff K. L. 1981; Phototaxis in Dictyostelium discoideum amoebae. Photochemistry and Photobiology 38:373–377
    [Google Scholar]
  14. Jander R. 1963; Insect orientation. Annual Review of Entomology 8:95–114
    [Google Scholar]
  15. Kessin R. H., Williams K. L., Newell P. C. 1974; Linkage analysis in Dictyostelium discoideum using temperature-sensitive growth mutants selected with bromodeoxyuridine. Journal of Bacteriology 119:776–783
    [Google Scholar]
  16. Kuffler S. W., Nicholls J. G. 1976 From Neuron to Brain Sunderland, Massachusetts: Sinauer Associates Inc.;
    [Google Scholar]
  17. Lenci F., Colombetti G. 1978; Photobehaviour of microorganisms: a biophysical approach. Annual Review of Biophysics and Bioengineering 7:341–361
    [Google Scholar]
  18. Loomis W. F. 1970; Mutants in phototaxis of Dictyostelium discoideum . Nature, London 227:745–746
    [Google Scholar]
  19. Maeda K., Imae Y. 1979; Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by l-serine. Proceedings of the National Academy of Sciences of the United States of America 7691–95
    [Google Scholar]
  20. Poff K. L., Loomis W. F. 1973; Control of phototactic migration in Dictyostelium discoideum . Experimental Cell Research 82:236–240
    [Google Scholar]
  21. Poff K. L., Skokut M. 1977; Thermotaxis by pseudoplasmodia of Dictyostelium discoideum . Proceedings of the National Academy of Sciences of the United States of America 712007–2010
    [Google Scholar]
  22. Raper K. B. 1940; Pseudoplasmodium formation and organization in Dictyostelium discoideum . Journal of the Elisha Mitchell Scientific Society 56:241–282
    [Google Scholar]
  23. Whitaker B. D., Poff K. L. 1980; Thermal adaptation of thermosensing and negative thermotaxis in Dictyostelium . Experimental Cell Research 128:87–93
    [Google Scholar]
  24. Williams K. L., Newell P. C. 1976; A genetic study of aggregation in the cellular slime mould Dictyostelium discoideum using complementation analysis. Genetics 82:287–307
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-5-965
Loading
/content/journal/micro/10.1099/00221287-128-5-965
Loading

Data & Media loading...

Most cited Most Cited RSS feed