1887

Abstract

Mutants of B that contain essentially no detectable glutathione were isolated. These mutants had a very low activity of -glutamylcysteine synthetase or glutathione synthetase. No significant differences in growth in minimal medium were observed between the mutants and the parental strain. The mutants lacking -glutamylcysteine synthetase activity were more susceptible to toxic compounds than either the parental strain or a glutathione synthetase-deficient strain. The mutants lacking -glutamylcysteine synthetase activity were also susceptible to oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-5-1047
1982-05-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/5/mic-128-5-1047.html?itemId=/content/journal/micro/10.1099/00221287-128-5-1047&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K-12. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  2. Apontoweil P., Berends W. 1975; Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K-12. Biochimica et biophysica acta 399:10–22
    [Google Scholar]
  3. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  4. Ellman G. L. 1959; Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82:70–77
    [Google Scholar]
  5. Fuchs J. A., Warner H. R. 1975; Isolation of an Escherichia coli mutant deficient in glutathione biosynthesis. Journal of Bacteriology 124:140–148
    [Google Scholar]
  6. Jackson R. C. 1969; Studies in the enzymology of glutathione metabolism in human erythrocytes. Biochemical Journal 111:309–315
    [Google Scholar]
  7. Kosower E. M., Kosower N. S. 1969; Lest I Forget Thee, Glutathione. Nature; London: 224117–120
    [Google Scholar]
  8. Kosower N. S., Kosower E. M., Wertheim B., Correa W. S. 1969; Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochemical and Biophysical Research Communications 37:593–596
    [Google Scholar]
  9. Mooz B. D., Meister A. 1967; Tripeptide (glutathione) synthesis, purification, properties, and mechanism of action. Biochemistry 6:1722–1734
    [Google Scholar]
  10. Murata K., Kato J., Chibata I. 1978; Continuous production of glutathione by immobilized Saccharomyces cerevisiae cells. European Journal of Applied Microbiology and Biotechnology 6:23–27
    [Google Scholar]
  11. Murata K., Tani K., Kato J., Chibata I. 1980; Excretion of glutathione by methylglyoxal-resistant Escherichia coli. Journal of General Microbiology 120:545–547
    [Google Scholar]
  12. Murata K., Tani K., Kato J., Chibata I. 1981; Isolation of Escherichia coli B mutants deficient in glutathione biosynthesis. Agricultural and Biological Chemistry 45:2131–2132
    [Google Scholar]
  13. Srivastava S. K., Awasthi Y. C., Beutler E. 1974; Useful agents for the study of glutathione metabolism in erythrocytes. Biochemical Journal 139:289–295
    [Google Scholar]
  14. Strumeyer D., Block K. 1962; γ-l-Glutamyl-l-cysteine from glutathione. Biochemical Preparations 9:52–54
    [Google Scholar]
  15. Szybalsky W., Bryson V. 1952; Genetic studies on microbial cross resistance to toxic agents. Journal of Biological Chemistry 64:489–499
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-5-1047
Loading
/content/journal/micro/10.1099/00221287-128-5-1047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error