1887

Abstract

A2 grown on thiosulphate lacks the capacity to transport succinate into the cells but is otherwise fully capable of oxidatively metabolizing succinate at a rapid rate. On the other hand, succinate-grown cells lack elements of the thiosulphate oxidation system; specifically, a special -type cytochrome. Adaptation of thiosulphate-grown cells to succinate is characterized by a 30–40 min pause in growth during which time an efficient succinate transport system is produced and net cytochrome synthesis ceases. Resumed synthesis of cytochromes and parallels resumption of growth in cells newly adapted to succinate. By contrast, net synthesis of the characteristic -type cytochrome of lithotrophic cells does not resume and the overall capacity to respire thiosulphate declines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-4-865
1982-04-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/4/mic-128-4-865.html?itemId=/content/journal/micro/10.1099/00221287-128-4-865&mimeType=html&fmt=ahah

References

  1. Brodie A. 1967; Microbial phosphorylating preparations: Mycobacterium. . Methods in Enzymology 10:168–169
    [Google Scholar]
  2. Butler W. L. 1972; Absorption spectroscopy of biological materials. Methods in Enzymology 24:3–25
    [Google Scholar]
  3. Butler W. L., Hopkins D. W. 1970; Higher derivative analysis of complex absorption spectra. Photochemistry and Photobiology 12:439–450
    [Google Scholar]
  4. Carr N. G. 1973; Metabolic control and autotrophic physiology. In The Biology of Blue-green Algae pp. 39–65 Carr N. G., Whitton B. A. Edited by Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  5. Charles A. M. 1971; Effect of growth substrate on the enzymes of the citric and glyoxylic acid cycles in Thiobacillus novellus. . Canadian Journal of Microbiology 17:617–624
    [Google Scholar]
  6. Haddock B. A., Jones C. W. 1977; Bacterial respiration. Bacteriological Reviews 41:47–99
    [Google Scholar]
  7. Kelly D. P. 1967; Problems of the autotrophic microorganism. Science Progress Oxford: 5535–51
    [Google Scholar]
  8. Kula T. J., Aleem M. I. H., Wilson D. F. 1975; Oxidation-reduction potentials of the cytochromes of Thiobacillus A2. . Bacteriological Proceedings 75:136
    [Google Scholar]
  9. Loya S. 1979 Chemoautotrophy versus chemo-heterotrophy in Thiobacillus A2. Ph.D. thesis Tel Aviv University, Israel.:
    [Google Scholar]
  10. Milhaud G., Aubert J. P., Millet J. 1958; Role physiologique du cytochrome c de la bactérie chimiautotrophic Thiobacillus denitrificans. . Comptes rendus hebdomadaires des séances de l’Académie des sciences 246:1766–1769
    [Google Scholar]
  11. Payne W. J. 1970; Energy yields and growth of heterotrophs. Annual Review of Microbiology 24:17–52
    [Google Scholar]
  12. Payne W. J., Wiebe W. J. 1978; Growth yield and efficiency in chemosynthetic microorganisms. Annual Review of Microbiology 32:155–183
    [Google Scholar]
  13. Peeters T. L., Liu M. S., Aleem M. I. H. 1970; The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus A2. Journal of General Microbiology 64:29–35
    [Google Scholar]
  14. Roy A. B., Trudinger P. A. 1970 The Biochemistry of Inorganic Compounds of Sulphur. London: Cambridge University Press;
    [Google Scholar]
  15. Rittenberg S. C. 1969; The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Advances in Microbial Physiology 3:151–196
    [Google Scholar]
  16. Smith A. J., Hoare D. S. 1977; Specialist phototrophs, lithotrophs and methylotrophs: a unity among a diversity of procaryotes? . Bacteriological Reviews 41:419–448
    [Google Scholar]
  17. Smith A. L., Kelly D. P., Wood A. P. 1980; Metabolism of Thiobacillus A2 grown under autotrophic, mixotrophic and heterotrophic conditions in chemostat culture. Journal of General Microbiology 121:127–138
    [Google Scholar]
  18. Taylor B. F., Hoare D. S. 1969; A new facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. . Journal of Bacteriology 100:487–497
    [Google Scholar]
  19. Taylor B. F., Hoare D. S. 1971; Thiobacillus denitrificans as an obligate chemolithotroph. II. Cell suspension and enzymic studies. Archiv für Mikrobiologie 80:262–276
    [Google Scholar]
  20. Tikhonova G. V., Lisenkova L. L., Doman N. G. 1967; Electron transport pathways in Thiobacillus ferrooxidans. . Biochemistry English translation of Biokhimiya) 32:599–605
    [Google Scholar]
  21. Trudinger P. A. 1961; Thiosulphate oxidation and cytochromes in Thiobacillus x. Biochemical Journal 78:673–680
    [Google Scholar]
  22. Wang C. H., Willis D. L. 1965 Radioactive Methodology in Biological Science. Englewood Cliffs, N.J.: Prentice Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-4-865
Loading
/content/journal/micro/10.1099/00221287-128-4-865
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error