Bacteriophage PBSX-induced Deletion Mutants of 168 Constitutive for Alkaline Phosphatase Free

Abstract

SUMMARY: Mutants of with deletions extending from the PBSX prophage, and in some cases removing ) and , have been found to be constitutive for vegetatively synthesized alkaline phosphatase. Such deletions were isolated by selecting for heat-resistant derivatives of a strain carrying a mutation causing heat-inducibility of the defective phage PBSX. These deletions remove the gene, a regulatory gene for alkaline phosphatase; it is concluded that the gene product exerts negative control on alkaline phosphatase synthesis. Deletion mapping, combined with previously published linkage data, indicates a gene order of PBSX-.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-4-663
1982-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/4/mic-128-4-663.html?itemId=/content/journal/micro/10.1099/00221287-128-4-663&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C. 1960; Alkaline phosphatase formation in Bacillus subtilis. Federation Proceedings 19:48
    [Google Scholar]
  2. Beckwith J., Rossow P. 1974; Analysis of genetic regulatory mechanisms. Annual Review of Genetics 8:1–13
    [Google Scholar]
  3. Bott K. F., Wilson G. A. 1968; Metabolic and nutritional factors influencing the development of competence for transfection of Bacillus subtilis. Bacteriological Reviews 32:370–378
    [Google Scholar]
  4. Brickman E., Beckwith J. 1975; Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ɸ80 transducing phages. Journal of Molecular Biology 96:307–316
    [Google Scholar]
  5. Buxton R. S. 1976; Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX. Journal of Virology 20:22–28
    [Google Scholar]
  6. Buxton R. S. 1980; Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage. Journal of General Virology 46:427–437
    [Google Scholar]
  7. Garro A. J., Leffert H., Marmur J. 1970; Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. Journal of Virology 6:340–343
    [Google Scholar]
  8. Glenn A. R., Mandelstam J. 1971; Sporulation in Bacillus subtilis 168. Comparison of alkaline phosphatase from sporulating and vegetative cells. Biochemical Journal 123:129–138
    [Google Scholar]
  9. Le Hégarat J.-C. 1969; Localisation chromosomique d’un gène governant la synthèse d’une phosphatase alcaline chez Bacillus subtilis. Comptes rendus hebdomadaires des séances de VAcademie des sciences 269:2048–2050
    [Google Scholar]
  10. Leighton T. J., Doi R. H. 1971; The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. Journal of Biological Chemistry 246:3189–3195
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  12. Miki T., Minima Z., Ikeda Y. 1965; The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics 52:1093–1100
    [Google Scholar]
  13. Nukushina J.-I., Ikeda Y. 1969; Genetic analysis of the developmental processes during germination and outgrowth of Bacillus subtilis spores with temperature-sensitive mutants. Genetics 63:63–74
    [Google Scholar]
  14. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  15. Piggot P. J., Taylor S. Y. 1977; New types of mutation affecting formation of alkaline phosphatase by Bacillus subtilis in sporulation conditions. Journal of General Microbiology 102:69–80
    [Google Scholar]
  16. Piggot P. J., Moir A., Smith D. A. 1981; Advances in the genetics of Bacillus subtilis differentiation. In Sporulation and Germination pp. 29–39 Levinson H., Sonenshein A. L., Tipper D. Edited by Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  17. Potvin B. W., Kelleher R. J., Gooder H. 1975; Pyrimidine biosynthetic pathway of Bacillus subtilis. Journal of Bacteriology 123:604–615
    [Google Scholar]
  18. Rosenthal R., Toye P. A., Korman R. Z., Zahler S. A. 1979; The prophage of SPβc2dc2dcitK1, a defective specialized transducing phage of Bacillus subtilis. Genetics 92:721–739
    [Google Scholar]
  19. Zahler S. A., Korman R. Z. 1981; Specialised transduction with Bacillus subtilis phage SPβ. In Sporulation and Germination pp. 101–103 Levinson H., Sonenshein A. L., Tipper D. Edited by Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-4-663
Loading
/content/journal/micro/10.1099/00221287-128-4-663
Loading

Data & Media loading...

Most cited Most Cited RSS feed