1887

Abstract

One hundred and fifty pink-pigmented facultatively methylotrophic bacteria (PPFMs) of the type, 28 other facultative methylotrophs and 16 non-methylo-trophic marker strains of the genera and were compared in a numerical phenetic study using 140 unit characters. Data were analysed using the simple matching () and Jaccard () coefficients and single, complete and average linkage algorithms. Cluster composition was largely the same with each similarity coefficient and linkage method. Four major and seven minor clusters containing 187 of the 194 strains were defined above the 80% similarity level. The non-pink methylotrophs were recovered in two major, four minor and two single-membered clusters. One of the major clusters could be equated with but strains in the other were not identified. Strains in two of the minor clusters were identified as species but members of the other two minor and one of the single-strain clusters were not positively identified. They had pseudomonad properties but were not closely associated with any marker strains. The other single-membered methylotroph cluster was thought to be a cytophaga or flexibacter. The remaining minor and single-membered clusters contained only marker strains. All the PPFMs were recovered in the two remaining major clusters which were closely related to each other but not to the rest of the organisms studied. The generic assignment of the PPFMs is discussed and the suggestion is made that the genus may be the most appropriate place for them, despite their apparent inability to utilize methane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-3-623
1982-03-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/3/mic-128-3-623.html?itemId=/content/journal/micro/10.1099/00221287-128-3-623&mimeType=html&fmt=ahah

References

  1. Anthony C., Zatman L. J. 1964; The microbial oxidation of methanol. I. Isolation and properties of Pseudomonas M27. Biochemical Journal 92:609–614
    [Google Scholar]
  2. Austin B., Goodfellow M. 1979; Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. International Journal of Systematic Bacteriology 29:373–378
    [Google Scholar]
  3. Bassalik K. 1913; Uber die Verarbeitung der Oxalsaure durch Bacillus extorquens n.sp. Jahrbuch für wissenschaftliche Botanik 53:255–302
    [Google Scholar]
  4. Bassalik C., Janota-Bassalik L., Brisou J. 1960; Etude sur Flavobacterium extorquens (ex.Pseudomonas extorquens). Annales de l’Institut Pasteur 98:165–168
    [Google Scholar]
  5. Bhat J. V., Barker H. A. 1948; Studies on a new oxalate decomposing bacterium, Vibrio oxalaticus. Journal of Bacteriology 55:359–368
    [Google Scholar]
  6. Breed R. S., Murray E. G. D., Smith N. R.editors 1957 Bergey’s Manual of Determinative Bacteriology, 7th. London:: Bailliere, Tindall & Cox.;
    [Google Scholar]
  7. Chandra T. S., Shethna Y. I. 1975; Isolation and characterization of some new oxalate- decomposing bacteria. Antonie van Leeuwenhoek 41:101–111
    [Google Scholar]
  8. Colby J., Zatman L. J. 1973; Trimethylamine metabolism in obligate and facultative methylotrophs. Biochemical Journal 132:101–112
    [Google Scholar]
  9. Cowan S. T. 1974 Cowan & Steel’s Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.;
    [Google Scholar]
  10. Crowle A. J. 1962; Corynebacterium rubrum nov. spec. A Gram positive non-acid fast bacterium of unusually high lipid content. Antonie van Leeuwenhoek 28:183–192
    [Google Scholar]
  11. Cruickshank R.editors 1960 Mackie and McCartney’s Handbook of Bacteriology, 10th edn. pp. 112–113 Edinburgh: E. and S. Livingstone.;
    [Google Scholar]
  12. Den Dooren De Jong L. E. 1927; Uber protaminophage Bakterien. Zentralblatt für Bakterio-logie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung II) 71:193–232
    [Google Scholar]
  13. De Ley J. 1970; Re-examination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology 101:738–754
    [Google Scholar]
  14. De Vries J. T., Derx H. G. 1953; On the occurrence of Mycoplana rubra and its identity with Protaminobacter ruber. Annales bogoriensis 1:53–60
    [Google Scholar]
  15. Dickinson C. H., Austin B., Goodfellow M. 1975; Quantitative and qualitative studies of phylloplane bacteria from Lolium perenne. Journal of General Microbiology 91:157–166
    [Google Scholar]
  16. Doudoroff M., Palleroni N. J. 1974; Genus I.Pseudomonas. In Bergey’s Manual of Determinative Bacteriology, 8th. pp. 217–243 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
  17. Gibson D. M., Ogden I. D. 1979; A rapid method for purifying bacterial deoxyribonucleic acid. Journal of Applied Bacteriology 46:421–423
    [Google Scholar]
  18. Goodfellow M., Alderson G. 1977; The actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex. Journal of General Microbiology 100:99–122
    [Google Scholar]
  19. Gräf W., Bauer L. 1973; Red bacterial growth (Corynebacterium rubrum n. spec.) in tap water systems. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I, Originate) 236:513–530
    [Google Scholar]
  20. Gray P. H. H., Thornton H. G. 1928; Soil bacteria that decompose certain aromatic compounds. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung II) 73:74–96
    [Google Scholar]
  21. Hampton D., Zatman L. J. 1973; The metabolism of tetramethylammonium chloride by bacterium 5H2. Biochemical Society Transactions 1:667
    [Google Scholar]
  22. Hanson R. S. 1980; Ecology and diversity of methylotrophic organisms. Advances in Applied Microbiology 26:3–39
    [Google Scholar]
  23. Harford S., Jones D., Weitzman P. D. J. 1976; Rapid techniques for the examination of bacterial citrate synthases. Journal of Applied Bacteriology 41:465–471
    [Google Scholar]
  24. Hayward A. C. 1960; Relationship between Protaminobacter ruber and some red pigmented pseudomonads. Journal of Applied Bacteriology 23:ii
    [Google Scholar]
  25. Henderson C., Hodgkiss W. 1973; An electron microscopic study of Anaerovibrio lipolytica (strain 5s) and its lipolytic enzyme. Journal of General Microbiology 76:389–393
    [Google Scholar]
  26. Hendrie M. S., Holding A. J., Shewan J. M. 1974; Emended description of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter. International Journal of Systematic Bacteriology 24:534–550
    [Google Scholar]
  27. Heumann W. 1962; Die Methodik der Kreuzung sternbildener Bakterien. Biologisches Zentralblatt 81:341–354
    [Google Scholar]
  28. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gramnegative bacteria. Journal of Bacteriology 66:24–26
    [Google Scholar]
  29. Janota-Bassalik L., Pedyk D. 1961; Ability of Flavobacterium extorquens Bassalik to utilise various sources of carbon with particular reference to glucose. Acta microbiologica polonica 10:225–238
    [Google Scholar]
  30. Kaneda T., Roxburgh J. M. 1959; A methanolutilizing bacterium, a. Description and nutritional requirements. Canadian Journal of Microbiology 5:87–98
    [Google Scholar]
  31. Kanopka A. E., Moore R. L., Staley J. T. 1976; Taxonomy of Microcyclus and other nonmotile, ring forming bacteria. International Journal of Systematic Bacteriology 26:505–510
    [Google Scholar]
  32. Keddie R. M., Bousfield I. J. 1980; Cell wall composition in the classification and identification of coryneform bacteria. In Microbiological Classification and Identification pp. 167–188 Goodfellow M., Board R. G. Edited by London: Academic Press.;
    [Google Scholar]
  33. Khambata S. R., Bhat J. V. 1953; Studies on a new oxalate-decomposing bacterium, Pseudomonas oxalaticus. Journal of Bacteriology 66:505–507
    [Google Scholar]
  34. Kirikova N. N. 1970; Properties of two strains of Pseudomonas utilizing one-carbon compounds. Microbiology (English translation of Mikrobiologiya) 39:12–16
    [Google Scholar]
  35. Kouno K., Ozaki A. 1975; Distribution and identification of methanol-utilizing bacteria. In Microbial Growth on C1 Compounds pp. 11–21 Terui G. et al. Edited by Japan: Society of Fermentation Technology.;
    [Google Scholar]
  36. Krasil’nikov N. A. 1959 Diagnostik der Bakterien und Actinomyceten. Jena: Gustav Fischer.; (Russian original, 1949).
    [Google Scholar]
  37. Lautrop H. 1974; Genus III.Moraxella. In Bergey’s Manual of Determinative Bacteriology, 8th. pp. 433–436 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
  38. Leadbetter E. R. 1974 In Bergey’s Manual of Determinative Bacteriology, 8th. p. 268 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
  39. Lelliot R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology 29:470–489
    [Google Scholar]
  40. Lynch M. J., Wopat A. E., O’connor M. L. 1980; Characterization of two new facultative methanotrophs. Applied and Environmental Microbiology 40:400–407
    [Google Scholar]
  41. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  42. Mehta R. J. 1973; Studies on methanol-oxidising bacteria. I. Isolation and growth studies. Antonie van Leeuwenhoek 39:295–302
    [Google Scholar]
  43. Owens J. D., Keddie R. M. 1968; A note on the vitamin requirements of some coryneform bacteria from soil and herbage. Journal of Applied Bacteriology 31:344–348
    [Google Scholar]
  44. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic sub-divisions of the genus Pseudomonas. Annual Review of Phytopathology 10:73–100
    [Google Scholar]
  45. Patt T. E., Cole G. C., Bland J., Hanson R. S. 1974; Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. Journal of Bacteriology 120:955–964
    [Google Scholar]
  46. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium, a new genus of facultatively methylotrophic bacteria. International Journal of Systematic Bacteriology 26:226–229
    [Google Scholar]
  47. Peel D., Quayle J. R. 1961; Microbial growth on Q compounds. I. Isolation and characterization of Pseudomonas AM1. Biochemical Journal 81:465–469
    [Google Scholar]
  48. Quayle J. R. 1961; Metabolism of C1 compounds in autotrophic and heterotrophic microorganisms. Annual Review of Microbiology 15:119–152
    [Google Scholar]
  49. Quayle J. R. 1972; The metabolism of one-carbon compounds by microorganisms. Advances in Microbial Physiology 7:119–203
    [Google Scholar]
  50. Rock J. S., Goldberg I., Ben-Bassat A., Mateles R. I. 1976; Isolation and characterization of two methanol utilizing bacteria. Agricultural and Biological Chemistry 40:2129–2135
    [Google Scholar]
  51. Sato K., Ueda S., Shimizu S. 1977; Form of vitamin B12 and its role in a methanol-utilizing bacterium, Protaminobacter ruber. Applied and Environmental Microbiology 33:515–521
    [Google Scholar]
  52. Schmitt R., Raska I., Mayer F. 1974; Plain and complex flagella of Pseudomonas rhodos:analysis of fine structure and composition. Journal of Bacteriology 117:844–857
    [Google Scholar]
  53. Shaw W. V., Tasi L., Stadtman E. R. 1966; The enzymatic synthesis of N-methylglutamic acid. Journal of Biological Chemistry 241:935–945
    [Google Scholar]
  54. Shewan J. M., Véron M. 1974; Genus I.Vibrio. In Bergey’s Manual of Determinative Bacteriology, 8th. pp. 340–345 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
  55. Skerman V. B. D.editor 1969 Abstracts of Microbiological Methods. New York: Wiley-Interscience.;
    [Google Scholar]
  56. Skerman V. B. D., McGowan V., Sneath P. H. A.editor 1980; Approved Lists of Bacterial Names. International Journal of Systematic Bacteriology 30225–420
    [Google Scholar]
  57. Sneath P. H. A. 1957; The application of computers to taxonomy. Journal of General Microbiology 17:201–226
    [Google Scholar]
  58. Sneath P. H. A., Stevens M. 1967; A divided Petri dish for use with multipoint inoculators. Journal of Applied Bacteriology 30:495–497
    [Google Scholar]
  59. Sneath P. H. A., Sokal R. R. 1974; Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman.;
    [Google Scholar]
  60. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Kansas University Science Bulletin 38:1409–1438
    [Google Scholar]
  61. Spencer R. 1969; New procedure for determining the ability of microorganisms to reduce nitrate to nitrite. Laboratory Practice 18:1286–1287
    [Google Scholar]
  62. Stewart D. J., Widanapatirana S. 1972; A simple replicator for utilization studies. Journal of Applied Bacteriology 35:517–518
    [Google Scholar]
  63. Stocks P. K., McCleskey C. S. 1964; Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. Journal of Bacteriology 88:1065–1070
    [Google Scholar]
  64. Van Ert M., Staley J. T. 1971; Gas-vacuolated strains of Microcyclus aquaticus. Journal of Bacteriology 108:236–240
    [Google Scholar]
  65. Von Graevenitz A., Grehn M. 1976; Culture and differentiation of obligately aerobic Gram negative rods from human material; a scheme for application in routine diagnosis. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrank- heiten und Hygiene (Abteilung I, Originale) 236:513–530
    [Google Scholar]
  66. Wagner C. 1964; Growth and metabolism on a one-carbon compound: trimethylsulfonium chloride. Bacteriological Proceedings103
    [Google Scholar]
  67. Weitzman P. D. J., Jones D. 1968; Regulation of citrate synthase and microbial taxonomy. Nature; London: 219270–272
    [Google Scholar]
  68. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. Journal of General Microbiology 61:205–218
    [Google Scholar]
  69. Willis A. T., Hobbs G. 1958; A medium for the identification of Clostridia producing opalescence in egg-yolk emulsions. Journal of Pathology and Bacteriology 75:299–305
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-3-623
Loading
/content/journal/micro/10.1099/00221287-128-3-623
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error