1887

Abstract

Galactitol-positive strains of K12 are inhibited by the galactitol analogues -fucitol and 2-deoxy--galactitol, but not by -fucitol; LT2 is not inhibited by these compounds. Most mutants selected as resistant to either toxic compound are unable to utilize galactitol as carbon source, but a relatively rare class is inducible for the Enzyme II of the galactitol: phosphoenolpyruvate phosphotransferase system, the product of which is -galactitol 6-phosphate. The lesion in one such mutant maps near at about min 45 on the genome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-3-601
1982-03-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/3/mic-128-3-601.html?itemId=/content/journal/micro/10.1099/00221287-128-3-601&mimeType=html&fmt=ahah

References

  1. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli. Proceedings of the Royal Society B165179–188
    [Google Scholar]
  2. Bachmann B. J. 1972; Pedigrees of some mutant strains of Escherichia coli K12. Bacteriological Reviews 36:525–557
    [Google Scholar]
  3. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K12, edition 6. Microbiological Reviews 44:1–56
    [Google Scholar]
  4. Blumenthal T. 1972; PI transduction: formation of heterogenotes upon cotransduction of bacterial genes with a P2 prophage. Virology 47:76–93
    [Google Scholar]
  5. Böck A., Neidhardt F. C. 1966; Isolation of a mutant of Escherichia coli with a temperature-sensitive fructose 1:6-diphosphate aldolase activity. Journal of Bacteriology 92:470–476
    [Google Scholar]
  6. Ferenci T., Kornberg H. L. 1973; The utilisation of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochemical Journal 132:341–347
    [Google Scholar]
  7. Henderson P. J. F., Giddens R. A., Jones-Mortimer M. C. 1977; Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. BLLD supplementary publication SUP 50074 to Biochemical Journal. 162:309–320
    [Google Scholar]
  8. Kornberg H. L., Reeves R. E. 1972; Correlation between hexose transport and phosphotransferase activity in Escherichia coli. Biochemical Journal 126:1241–1243
    [Google Scholar]
  9. Kornberg H. L., Smith J. 1972; Genetic control of glucose uptake by Escherichia coli. FEBS Letters 20:270–272
    [Google Scholar]
  10. Lederberg J., Cavalli L. L., Lederberg E. M. 1952; Sex compatibility in Escherichia coli. Genetics 37:720–730
    [Google Scholar]
  11. Lengeler J. 1975a; Mutations affecting transport of the hexitols d-mannitol, d-glucitol and galactitol in Escherichia coli: isolation and mapping. Journal of Bacteriology 124:26–38
    [Google Scholar]
  12. Lengeler J. 1975b; Nature and properties of hexitol transport systems in Escherichia coli. Journal of Bacteriology 124:39–47
    [Google Scholar]
  13. Lengeler J., Steinberger H. 1978; Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Molecular and General Genetics 164:163–169
    [Google Scholar]
  14. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  15. Miles R. J., Pirt S. J. 1973; Inhibition by 3-deoxy-3-fluoro-D-glucose of the utilization of lactose and other carbon sources by Escherichia coli. Journal of General Microbiology 76:305–318
    [Google Scholar]
  16. Robbins A. R. 1975; Regulation of the Escherichia coli methylgalactoside transport system by gene mglD. Journal of Bacteriology 123:69–74
    [Google Scholar]
  17. Robbins A. R., Rotman B. 1975; Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America 72423–427
    [Google Scholar]
  18. Woodward M. J., Charles H. P. 1980; Genes for ribitol and arabitol utilization, and genes for galactitol utilisation, behave as chromosomal alternatives. Society for General Microbiology Quarterly 7:82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-3-601
Loading
/content/journal/micro/10.1099/00221287-128-3-601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error