1887

Abstract

Growth of with low concentrations of benzylpenicillin inhibited septum formation and division of the organisms. This resulted in continued growth of the organisms as aseptate filaments. The effect was reversed on removal of the antibiotic. The composition of walls isolated from organisms grown with the antibiotic was similar to that of walls from untreated bacteria. In addition, both contained non--acetylated glucosamine residues in their peptidoglycan. No differences were detected in the degree of cross-linkage of peptidoglycan. contains six membrane-associated penicillin-binding proteins (PBPs) which have different affinities for [H]benzylpenicillin. Concentrations of the antibiotic which were sufficient to cause filamentation of apparently all organisms in a culture caused almost complete saturation of PBPs 3, 4, 5 and 6. At these concentrations there was no measurable interaction with PBPs 1 and 2. Thus interaction of the antibiotic with the lower molecular weight PBPs is correlated with the inhibition of septum formation in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-12-3025
1982-12-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/12/mic-128-12-3025.html?itemId=/content/journal/micro/10.1099/00221287-128-12-3025&mimeType=html&fmt=ahah

References

  1. Ahmed N., Rowbury R. J. 1971; Antibiotics and cell division in a filament-forming mutant of Salmonella typhimurium. Microbios 4:181–191
    [Google Scholar]
  2. Araki Y., Nakatani T., Nakayama K., Ito E. 1972; Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus. Journal of Biological Chemistry 247:6312–6322
    [Google Scholar]
  3. Bogdanovsky D., Bricas E., Dezelée P. 1969; Identification of mucoendopeptidase and carboxy-peptidase 1. Enzymes of Escherichia coli which hydrolyse bonds of d-d configuration and are inhibited by penicillin. Comptes rendus hebdomadaires des sèances de l’Academie des sciences 269:309–393
    [Google Scholar]
  4. Buchanan C. E., Strominger J. L. 1976; Altered penicillin-binding components in penicillin-resistant mutants of Bacillus subtilis. Proceedings of the National Academy of Science of the United States of America 73:1818–1820
    [Google Scholar]
  5. Burdett I. D. J. 1980; Analysis of sites of autolysis in Bacillus subtilis by electron microscopy. Journal of General Microbiology 120:35–49
    [Google Scholar]
  6. Burdett I. D. J., Higgins M. L. 1978; Study of pole assembly in Bacillus subtilis by computer reconstruction of septal growth zones seen in central, longitudinal thin sections of cells. Journal of Bacteriology 133:959–971
    [Google Scholar]
  7. Burdett I. D. J., Murray R. G. E. 1974; Septum formation in Escherichia coli: characterisation of septal structure and the effects of antibiotics on cell division. Journal of Bacteriology 119:303–324
    [Google Scholar]
  8. Crofts J. E., Evans D. G. 1950; The action of penicillin on Clostridium welchii type A. British Journal of Experimental Pathology 31:550–561
    [Google Scholar]
  9. Curtis N. A. C., Orr D., Ross G. W., Boulton M. G. 1979; Competition of β-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes., Proteus rettgeri and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrobial Agents and Chemotherapy 16:325–328
    [Google Scholar]
  10. Fleck J., Mock M. 1972; Étude de la forme filamenteuse de Proteus vulgarisP18 induitepar la penicilline. Annates de l’Institut Pasteur 123:319–332
    [Google Scholar]
  11. Fordham W. D., Gilvarg C. 1974; Kinetics of cross-linking of peptidoglycan in Bacillus megaterium. Journal of Biological Chemistry 249:2478–2482
    [Google Scholar]
  12. Forsberg C. W., Ward J. B. 1972; N-Acetyl-muramyl-l-alanine amidaseof Bacillus licheniformisand its l-form. Journal of Bacteriology 110:878–888
    [Google Scholar]
  13. Gardner A. D. 1940; Morphological effects of penicillin on bacteria. Nature; London: 146837–838
    [Google Scholar]
  14. Hartmann R., Holtje J.-V., Schwartz U. 1972; Targets of penicillin action in Escherichia coli. Nature; London: 235426–429
    [Google Scholar]
  15. Hayashi H., Araki Y., Ito E. 1973; Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysosyme. Journal of Bacteriology 113:592–598
    [Google Scholar]
  16. Highton P. J., Hobbs D. G. 1971; Penicillin and cell wall synthesis: a study of Bacillus licheniformis by electron microscopy. Journal of Bacteriology 106:646–658
    [Google Scholar]
  17. Iida K., Hirata S., Nakamuta S., Koike M. 1978; Inhibition of cell division of Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrobial Agents and Chemotherapy 14:257–266
    [Google Scholar]
  18. Izaki K., Matsuhashi M., Strominger J. L. 1968; Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and d-alanine carboxypeptidase; penicillin-sensitive enzymatic reactions. Journal of Biological Chemistry 243:3180–3192
    [Google Scholar]
  19. Kawata T., Takumi K. 1970; Initiation sites of autolysis in Clostridium perfringens type A as revealed by electron microscopy. Journal of General and Applied Microbiology 16:341–345
    [Google Scholar]
  20. Leyh-Bouille M., Bonaly R., Ghuysen J.-M., Tinelli R., Tipper D. J. 1970; l,l-Diamino-pimelic acid-containing peptidoglycans in walls of Streptomyces sp. and of Closteridium perfringens (type A). Biochemistry 9:2944–2952
    [Google Scholar]
  21. Lorian V., Atkinson B. 1976; Effects of subinhibitory concentrations of antibiotics on crosswalls of cocci. Antimicrobial Agents and Chemotherapy 9:1043–1055
    [Google Scholar]
  22. Mirelman D., Yashouv-Gan Y., Schwarz U. 1976; Growth pattern of peptidoglycan: biosynthesis in a thermosensitive division mutant of Escherichia coli. Biochemistry 15:1781–1790
    [Google Scholar]
  23. Mirelman D., Yashouv-Gan Y., Schwarz U. 1977; Regulation of murein biosynthesis and septum formation in filamentous cells of Escherichia coli PAT 84. Journal of Bacteriology 129:1539–1600
    [Google Scholar]
  24. Noguchi H., Matsuhashi M., Mitsuhashi S. 1979; Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coli. European Journal of Biochemistry 100:41–49
    [Google Scholar]
  25. Pollock M. R. 1965; Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical, physicochemical and physiological comparison. Biochemical Journal 92:666–675
    [Google Scholar]
  26. Rogers H. J. 1974; Peptidoglycans (mucopeptides): structure, function, and variations. Annals of the New York Academy of Science 235:29–51
    [Google Scholar]
  27. Siegel J. L., Hurst S. F., Liberman E. S., Coleman S. E., Bleiweis A. S. 1981; Mutanolysin-induced spheroplasts of Streptococcus mutantsare true protoplasts. Infection and Immunity 31:808–815
    [Google Scholar]
  28. Spratt B. G. 1975; Distinct penicillin-binding proteins involved in the division, elongation and cell shape of Escherichia coli. Proceedings of the National Academy of Science of the United States of America 72:2999–3003
    [Google Scholar]
  29. Spratt B. G. 1977; Temperature-sensitive cell division mutants of Escherichia coli with thermolabile penicillin-binding proteins. Journal of Bacteriology 131:293–305
    [Google Scholar]
  30. Spratt B. G. 1978; Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality. Nature; London: 274713–715
    [Google Scholar]
  31. Spratt B. G., Pardee A. 1975; Penicillin-binding proteins and cell shape in Escherichia coli. Nature; London: 254516–517
    [Google Scholar]
  32. Tzagoloff H., Novick R. 1977; Geometry of cell division in Staphylococcus aureus. Journal of Bacteriology 129:343–350
    [Google Scholar]
  33. Williams J. M. 1975; Deamination of carbohydrate amines and related compounds. Advances in Carbohydrate Chemistry and Biochemistry 31:9–79
    [Google Scholar]
  34. Williamson R., Ward J. B. 1979; Characterization of the autolytic enzymes of Clostridium perfringens. Journal of General Microbiology 114:349–354
    [Google Scholar]
  35. Williamson R., Hakenbeck R., Tomasz A. 1980; The penicillin-binding proteins of Streptococcus pneumoniae grown under lysis-permissive and lysis-protective (tolerant) conditions. FEMS Microbiology Letters 7:127–131
    [Google Scholar]
  36. Zimmerman S. B., Stapley E. O. 1976; Relative morphological effects induced by cefoxitin and other β-lactam antibiotics in vitro. Antimicrobial Agents and Chemotherapy 9:318–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-12-3025
Loading
/content/journal/micro/10.1099/00221287-128-12-3025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error