Effect of Dissolved Oxygen Tension on Production of Carotenoids, poly--hydroxybutyrate, Succinate Oxidase and Superoxide Dismutase by Cd Grown in Continuous Culture Free

Abstract

strain Cd was grown in a medium containing NH in a chemostat at a range of constant dissolved oxygen tensions (d.o.t.) (0·070–0·18 atm). Poly--hydroxybutyrate (up to 12% of the cell dry weight) increased under oxygen limitation and moderate dilution rate ( = 0·14 h). The highest carotenoid content was observed at high d.o.t. and dilution rates up to 0·12 h. The amount of protein varied with d.o.t. from 0·29 mg protein (mg dry wt) at 0·007 atm to 0·54 mg at 0·18 atm. The yield efficiency and respiration rate were highest at low d.o.t. and decreased significantly at a d.o.t. of 0·18 atm. Succinate dehydrogenase and malate dehydrogenase activities increased 2·5-fold at 0·10-0·18 atm O, whereas succinate oxidase and NADH oxidase activities increased consistently with increasing d.o.t. showed a low specific activity for catalase; the specific activity of superoxide dismutase increased sharply above 0·16 atm O.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-12-2937
1982-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/12/mic-128-12-2937.html?itemId=/content/journal/micro/10.1099/00221287-128-12-2937&mimeType=html&fmt=ahah

References

  1. Bergersen F. J., Turner G. L. 1980; Properues of terminal oxidase systems of bacteroids from roots of soybean and cowpea and of N2-fixing bacteria grown in continuous culture. Journal of General Microbiology 118:235–252
    [Google Scholar]
  2. Buchanan A. G., Lees H. 1976; The effects of pH and temperature on the assays of superoxide dismutase. Canadian Journal of Microbiology 22:1643–1646
    [Google Scholar]
  3. Courtright J. B., Henning U. 1970; Malate dehydrogenase mutants in Escherichia coli K-12. Journal of Bacteriology 102:722–728
    [Google Scholar]
  4. Day J. M., Döbereiner J. 1976; Physiological aspects of N2-fixation by a Spirillum from Digitariaroots. Soil Biology and Biochemistry 8:45–50
    [Google Scholar]
  5. Johnson M. J. 1949; A rapid micromethod of estimation of non-volatile organic matter. Journal of Biological Chemistry 181:707–711
    [Google Scholar]
  6. Hendler R. W., Burgess A. H. 1974; Fractionation of electron-transport chain of Escherichia coli. Biochimica et biophysica acta 357:215–230
    [Google Scholar]
  7. Krinsky N. I. 1979; Caroienoiu protection against oxidation. Pure and Applied Chemistry 51:649–660
    [Google Scholar]
  8. Markwell A. M., Suzanne K., Hass M., Bieber L. L., Tolbert N. E. 1979; Modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87:206–210
    [Google Scholar]
  9. Nelson L. M., Knowles R. 1978; Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Canadian Journal of Microbiology 24:1395–1403
    [Google Scholar]
  10. Nur I., Okon Y., Henis Y. 1980; Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel with Azospirillum brasilense. Canadian Journal of Microbiology 26:714–718
    [Google Scholar]
  11. Nur I., Steinitz Y. L., Okon Y., Henis Y. 1981; Carotenoid composition and function in nitrogenfixing bacteria of the genus Azospirillum. Journal of General Microbiology 122:27–32
    [Google Scholar]
  12. Okon Y., Albrecht S. L., Burris R. H. 1976a; Factors affecting growth and nitrogen fixation of Spirillum lipoferum. Journal of Bacteriology 127:1248–1254
    [Google Scholar]
  13. Okon Y., Albrecht S. L., Burris R. H. 1976b; Carbon and ammonia metabolism of Spirillum lipoferum. Journal of Bacteriology 128:592–597
    [Google Scholar]
  14. Okon Y., Cakmakci L., Nur I., Chet I. 1980; Aerotaxis and chemotaxis of Azospirillum brasilense. Microbial Ecology 6:277–280
    [Google Scholar]
  15. Okon Y., Houchins J. P., Albrecht S. L., Burris R. H. 1977; Growth of Spirillum lipoferum at constant partial pressures of oxygen and the properties of its nitrogenase in cell-free extracts. Journal of General Microbiology 98:87–93
    [Google Scholar]
  16. Rottem S., Markowitz O. 1979; Carotenoids act as reinforcers of Acholeplasma laidlawii lipid bilayer. Journal of Bacteriology 140:944–948
    [Google Scholar]
  17. Senior P. J., Beech G. A., Ritchie G. A. F., Dawes E. A. 1972; The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochemical Journal 128:1193–1201
    [Google Scholar]
  18. Stern A. I., Schiff J. A., Epstein H. T. 1964; Studies of chloroplast development in Euglena. V. Pigment biosynthesis, photosynthetic oxygen evolution and carbon dioxide fixation during chloroplast development. Plant Physiology 39:200–226
    [Google Scholar]
  19. Stone R. W., Wilson P. W. 1952; Respiratory activity of cell-free extracts from Azotobacter. Journal of Bacteriology 63:605–617
    [Google Scholar]
  20. Stouthamer A. H., De Vries W., Niekus H. G. D. 1979; Microaerophily. Antonie van Leeuwenhoek 45:5–12
    [Google Scholar]
  21. Tarrand J. J., Krieg N. R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with description of a new genus Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijer-inck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology 24:967–980
    [Google Scholar]
  22. Ward A. C., Rowley B. I., Dawes E. A. 1977; Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium-grown Azotobacter beijerinckii. Journal of General Microbiology 102:61–68
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-12-2937
Loading
/content/journal/micro/10.1099/00221287-128-12-2937
Loading

Data & Media loading...

Most cited Most Cited RSS feed