1887

Abstract

At concentrations up to 1 m, -asparagine was accumulated by X-2180 at 30 °C against a concentration gradient. Values for and were, respectively, 3.·5 × 10 M and 33 nmol (mg dry wt) min. At concentrations below 0·1 m, a convex curve was obtained on a Woolf-Hofstee plot, possibly indicating the presence of two -asparagine-binding sites. Autoradiograms of extracts of organisms that had accumulated labelled -asparagine revealed only one spot with an value identical with that of -asparagine. Four mutant strains lacking the ability to synthesize the general amino acid permease system grew and accumulated -asparagine at similar rates to the parent. The rate of accumulation of -asparagine from a 0·2 m solution was greatest at pH 4·5, with the decrease in accumulation rate greater at values below than above 4·5. -Glutamine, -histidine, -methionine, -threonine and -tryptophan caused appreciable inhibition of the rate of -asparagine accumulation. With the exception of -methionine, the inhibition caused by these amino acids was competitive. Several other amino acids, including -asparagine and -aspartic acid, caused little or no inhibition of -asparagine accumulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-11-2557
1982-11-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/11/mic-128-11-2557.html?itemId=/content/journal/micro/10.1099/00221287-128-11-2557&mimeType=html&fmt=ahah

References

  1. Beavan M. J., Charpentier C., Rose A. H. 1982; Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharo- myces cerevisiae NCYC431. Journal of General Microbiology 128:1447–1455
    [Google Scholar]
  2. Borst-Pauwels G. W. F. H. 1973; Two-site single carrier transport kinetics. Journal of Theoretical Biology 40:19–31
    [Google Scholar]
  3. Borst-Pauwels G.W.F.H., Wolters G. H. J., Hendricks J. J. G. 1971; The interaction of 2,4-dinitrophenol with anaerobic Rb+ transport across the yeast cell membrane. Biochimica et biophysica acta 225:269–276
    [Google Scholar]
  4. Bussey H., Umbarger H. E. 1970a; Biosynthesis of the branched-chain amino acids in yeast: a leucine-binding component and regulation of leucine uptake. Journal of Bacteriology 103:277–285
    [Google Scholar]
  5. Bussey H., Umbarger H. E. 1970b; Biosynthesis of the branched-chain amino acids in yeast: a trifluoroleucine-resistant mutant with altered regulation of leucine uptake. Journal of Bacteriology 103:286–294
    [Google Scholar]
  6. Chan P. Y., Cossins E. A. 1976; General properties and regulation of arginine transporting systems in Saccharomyces cerevisiae. Plant and Cell Physiology 17:341–353
    [Google Scholar]
  7. Crabeel M., Grenson M. 1970; Regulation of histidine uptake by a specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. European Journal of Biochemistry 14:197–204
    [Google Scholar]
  8. Darte C., Grenson M. 1975; Evidence for three glutamic acid-transporting systems with specialized physiological functions in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 67:1028–1033
    [Google Scholar]
  9. Dixon M. 1953; The determination of enzyme inhibition constants. Biochemical Journal 55:170–171
    [Google Scholar]
  10. Dunlop P. C., Roon R. J. 1975; l-Asparaginase of Saccharomyces cerevisiae: an extracellular enzyme. Journal of Bacteriology 122:1017–1024
    [Google Scholar]
  11. Dunlop P. C., Roon R. J., Even H. 1976; Utilization of d-asparagine by Saccharomyces cerevisiae. Journal of Bacteriology 125:999–1004
    [Google Scholar]
  12. Gits J. J., Grenson M. 1967; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. III. Evidence for a specific methionine-transporting system. Biochimica et biophysica acta 135:507–516
    [Google Scholar]
  13. Gits J. J., Grenson M. 1969; Regulation du transport des acides amines methyles chez Saccharomyces cerevisiae. Archives internationales de physiologic et biochemie 77:153–154
    [Google Scholar]
  14. Greasham R. L., Moat A. G. 1973; Amino acid transport in a polyaromatic amino acid auxotroph of Saccharomyces. Journal of Bacteriology 115:975–981
    [Google Scholar]
  15. Grenson M. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochimica et biophysica acta 127:339–346
    [Google Scholar]
  16. Grenson M., Hou C. 1972; Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 48:749–765
    [Google Scholar]
  17. Grenson M., Mousset M., Wiame J. M., Bechet J. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochimica et biophysica acta 127:325–338
    [Google Scholar]
  18. Grenson M., Hou C., Crabeel M. 1970; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. Journal of Bacteriology 103:770–777
    [Google Scholar]
  19. Hofstee B. H. J. 1959; Non-inverted versus inverted plots in enzyme kinetics. Nature; London: 1841296–1298
    [Google Scholar]
  20. Janda S., Kotyk A., Tauchová R. 1976; Monosaccharide transport systems in the yeast Rhodotorula glutinis. Archives of Microbiology 111:151–154
    [Google Scholar]
  21. Joiris C. R., Grenson K. 1969; Spécificité et régulation d’une pérmease des acides aminés dicar- boxyliques chez Saccharomyces cerevisiae. Archives internationales de physiologie et biochemie 77:154–156
    [Google Scholar]
  22. Jones G. E., Mortimer R. K. 1973; Biochemical properties of yeast l-asparaginase. Biochemical Genetics 9:131–146
    [Google Scholar]
  23. Keenan M. H. J., Rose A. H., Silverman B. W. 1982; Effect of plasma-membrane phospholipid unsaturation on solute transport into Saccharomyces cerevisiae NCYC 366. Journal of General Microbiology 128:2547–2556
    [Google Scholar]
  24. Kotyk A. P., Michaljaničová D. 1979; Uptake of trehalose by Saccharomyces cerevisiae. Journal of General Microbiology 110:323–332
    [Google Scholar]
  25. Larimore F. S., Roon R. J. 1978; Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae. Biochemistry 17:431–436
    [Google Scholar]
  26. Lasko P. F., Brandriss M. C. 1981; Proline transport in Saccharomyces cerevisiae. Journal of Bacteriology 148:241–247
    [Google Scholar]
  27. Patching J. W., Rose A. H. 1969; The effects and control of temperature. Methods in Microbiology 2:23–38
    [Google Scholar]
  28. Rytka J. 1975; Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. Journal of Bacteriology 121:562–570
    [Google Scholar]
  29. Wickerham L. J. 1951; Taxonomy of yeasts. I. Techniques of classification. United States Department of Agriculture Technical Bulletin1029 Washington, D.C: U.S. Department of Agriculture;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-11-2557
Loading
/content/journal/micro/10.1099/00221287-128-11-2557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error