1887

Abstract

Growth of six pure cultures of methanogens was inhibited by low concentrations of dissolved acetylene (CH); other archaebacteria (three species) and several eubacteria were not similarly affected. The minimum concentration of dissolved CH required to inhibit growth of completely was about 8 mu;; dissolved ethylene at 20 μ had little effect on growth. Dissolved acetylene (33 mu;) did not alter the of the medium, or result in a loss in viability of after 16 h exposures. In anaerobic cell extracts of , activities of hydrogenase, NADP reductase, methyl-coenzyme M reductase and ATP hydrolase were not inhibited by CH concentrations several times higher than those required for growth inhibition. The intracellular ATP content of all of the methanogens dropped dramatically on exposure to CH. Moreover, cells of and on exposure to CH lost their ability to maintain a transmembrane pH gradient. We suggest that exposure to CH results in a decline in methanogen functions which require a H-flux, including ATP synthesis, Ni uptake and methanogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-10-2453
1982-10-01
2022-06-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/10/mic-128-10-2453.html?itemId=/content/journal/micro/10.1099/00221287-128-10-2453&mimeType=html&fmt=ahah

References

  1. Alexander H. E., Leidy G. 1953; Induction of streptomycin resistance in sensitive Hemophilus influenzae by extracts containing desoxyribonucleic acid from resistant Hemophilus influenzae. Journal of Experimental Medicine 97:17–31
    [Google Scholar]
  2. Anderson P., Johnston R. B. 1972; Human serum activities against Hemophilus influenzae type b. Journal of Clinical Investigation 51:31–38
    [Google Scholar]
  3. Bendler J. W.III 1976; Physical size of the donor locus and transmission of Haemophilus influenzae ampicillin resistance genes by deoxyribonucleic acid-mediated transformation. Journal of Bacteriology 125:197–204
    [Google Scholar]
  4. Broda P. 1979 Plasmids pp. 12–22 Oxford & San Francisco: W. H. Freeman;
    [Google Scholar]
  5. Daum R. S., Syriopoulou V. PH., Smith A. L., Scheifele D. W., Willard J. E. 1981; Loss of plasmid DNA coding for β-lactamase during experimental Haemophilus influenzae infection. Journal of Infectious Diseases 143:548–553
    [Google Scholar]
  6. Daum R. S., Zutter M., Johnson E. J., Willard J. E. 1982; Pathogenic efficiency of plasmid containing ampicillin resistant H. influenzae type b. Abstract 961 Pediatric Research 16:239A
    [Google Scholar]
  7. Degraaff J., Elwell L. P., Falkow S. 1976; Molecular nature of two beta-lactamase-specifying plasmids isolated from Haemophilus influenzae type b. Journal of Bacteriology 126:439–446
    [Google Scholar]
  8. Elwell L. P., DeGraaff J., Seibert D., Falkow S. 1975; Plasmid-linked ampicillin resistance in Haemophilus influenzae type b. Infection and Immunity 12:404–410
    [Google Scholar]
  9. Elwell L. P., Saunders J. R., Richmond M. H., Falkow S. 1977; Relationships among some R plasmids found in Haemophilus influenzae. Journal of Bacteriology 131:356–362
    [Google Scholar]
  10. Farrar W. E., O’Dell N. 1974; Beta-lactamase activity in ampicillin-resistant Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 6:625–629
    [Google Scholar]
  11. Gunn B. A., Woodall J. B., Jones J. F., Thorns-Berry C. 1974; Ampicillin-resistant Haemophilus influenzae. Lancet 2:845
    [Google Scholar]
  12. Hansen J. B., Olsen R. H. 1978; Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMGl and pMG5. Journal of Bacteriology 135:227–238
    [Google Scholar]
  13. Harkess N. K., Murray M. L. 1978; Restriction enzyme analysis of plasmids from Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 13:802–808
    [Google Scholar]
  14. Hedges R. W., Jacob A. 1974; Transposition of ampicillin resistance from RP4 to other replicons. Molecular and General Genetics 132:31–40
    [Google Scholar]
  15. Heffron F., Rubens C., Falkow S. 1975a; Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Proceedings of the National Academy of Sciences of the United States of America 72:3623–3627
    [Google Scholar]
  16. Heffron F., sublett R., Hedges R. W., Jacob A., Falkow S. 1975b; Origin of the TEM beta- lactamase gene found on plasmids. Journal of Bacteriology 122:250–256
    [Google Scholar]
  17. Jahn G., Laufs R., Kaulfers P. M., Kolenda H. 1979; Molecular nature of two Haemophilus influenzae R-factors containing resistances and the multiple integration of drug resistance transposons. Journal of Bacteriology 138:584–597
    [Google Scholar]
  18. Laufs R., Fock R. 1979; Characterization of genes specifying ampicillin resistance in bacterial isolates using a single-strand specific nuclease for analysis of plasmid DNA-DNA duplexes. Journal of General Microbiology 111:233–237
    [Google Scholar]
  19. Laufs R., Kaulfers P. M. 1977; Molecular characterization of a plasmid specifying ampicillin resistance and its relationship to other R-factors from Haemophilus influenzae. Journal of General Microbiology 103:277–286
    [Google Scholar]
  20. Laufs R., Kaulfers P. M., Jahn G., Teschner U. 1979; Molecular characterization of a small Haemophilus influenzae plasmid specifying β-lacta- mase and its relationship to R factors from Neisseria gonorrhoeae. Journal of General Microbiology 111:223–231
    [Google Scholar]
  21. Medeiros A. A., O’Brien T. F. 1975; Ampicillin resistant Haemophilus influenzae type b possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet 1:716–718
    [Google Scholar]
  22. Meyers J. A., Sanchez D., Elwell L. P., Falkow S. 1976; Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. Journal of Bacteriology 127:1529–1537
    [Google Scholar]
  23. Morse S. I. 1980; The Hemophilus-Bordetella group. In Microbiology, 3rd edn. pp. 793–794 Davis B. D. others Edited by Hagarstown, Maryland: Harper & Row;
    [Google Scholar]
  24. Moxon E. R., Smith A. L., Averill D. R., Smith D. H. 1974; Haemophilus influenzae meningitis in infant rats after intranasal inoculation. Journal of Infectious Diseases 129:154–162
    [Google Scholar]
  25. O’Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β-lactamase by using a chromogenic cephalosporin substrate. Antimicrobial Agents and Chemotherapy 1:283–288
    [Google Scholar]
  26. Roberts M. C., Smith A. L. 1980; Molecular characterization of ‘plasmid-free’ antibiotic resistant Haemophilus influenzae. Journal of Bacteriology 144:476–479
    [Google Scholar]
  27. Saunders J. R., Sykes R. B. 1977; Transfer of a plasmid specified beta-lactamase gene from Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 11:339–344
    [Google Scholar]
  28. Saunders J. R., Elwell L. P., Falkow S., Sykes R. B., Richmond M. H. 1978; β-Lactamases and R-plasmids of Haemophilus influenzae. Scandinavian Journal of Infectious Diseases 13s:16–22
    [Google Scholar]
  29. Slaney L., Albritton W. L. 1979; Transferable antibiotic resistance in Haemophilus influenzae. Abstract H79 79th Annual Meeting of the American Society for Microbiology, p. 132
    [Google Scholar]
  30. Stuy J. H. 1979; Plasmid transfer in Haemophilus influenzae. Journal of Bacteriology 139:520–529
    [Google Scholar]
  31. Stuy J. H. 1980; Chromosomally integrated conju- gative plasmids are common in antibiotic-resistant Haemophilus influenzae. Journal of Bacteriology 142:925–930
    [Google Scholar]
  32. Sykes R. B., Matthew M., O’Callaghan C. H. 1975; R-factor mediated β-lactamase production by Haemophilus influenzae. Journal of Medical Microbiology 8:437–441
    [Google Scholar]
  33. Vega R., Sadoff H. L., Patterson M. J. 1976; Mechanisms of ampicillin resistance in Haemophilus influenzae type b. Antimicrobial Agents and Chemotherapy 9:164–168
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-10-2453
Loading
/content/journal/micro/10.1099/00221287-128-10-2453
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error