Amplification and Product Identification of the fnr gene of Escherichia coki Free

Abstract

The position of a gene () that is essential for growth of with fumarate or nitrate as electron acceptor was located within an 11·5 kb dIII fragment of bacterial DNA by deletion analysis with transducing phages () and by sub-cloning restriction fragments into multicopy plasmids. The functional gene was isolated in a 1·65 kb HI-dIII fragment of a hybrid plasmid pGS24. The gene product wasidentified as a protein of 31000, by post-infection labelling and by the ‘maxicell’ method. Organisms containing the multicopy plasmid (pGS24) overproduced fumarate reductase to the same extent as cultures containing a comparable fumarate reductase plasmid (pNU3 1) during anaerobic growth; the plasmid also overcame the repression of fumarate reductase synthesis that is normally observed during aerobic growth. Similar effectson nitrate reductase synthesis were also observed. The results support the view that the gene product functions as a positive regulator or a specific sigma factor for expression of anaerobic energy-generating systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-10-2221
1982-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/10/mic-128-10-2221.html?itemId=/content/journal/micro/10.1099/00221287-128-10-2221&mimeType=html&fmt=ahah

References

  1. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K12. , Edition 6.. Microbiological Reviews 44:1–56
    [Google Scholar]
  2. Barr G. C., Palm-Nicholls S. E. 1981; Cloning the chlC gene for nitrate reductase of Escherichia coli. . FEMS Microbiology Letters 11:213–216
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Bolivar F. 1978; Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules. Gene 4:121–136
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Bet-Lach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Bouché J. P., Gélugne J. P., Louarn J., Louarn J. M., Kaiser K. 1982; Relationships between the physical and genetic maps of a 470 × 103 base- pair region around the terminus of E. coli K12 DNA replication. Journal of Molecular Biology 154:21–32
    [Google Scholar]
  7. Burton Z., Burgess R. R., Lin J., Moore D., Holder S., Gross C. A. 1981; The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from Escherichia coli K12. Nucleic Acids Research 9:2889–2903
    [Google Scholar]
  8. Chippaux M., Giudici D., Abou-Jaoudé A., Casse F., Pascal M. C. 1978; A mutation leading to the total lack of nitrite reductase activity in Escherichia coli K12. Molecular and General Genetics 160:225–229
    [Google Scholar]
  9. Chippaux M., Bonnefoy-Orth V., Ratouchniak J., Pascal M. C. 1981; Operon fusions in the nitrate reductase operon and study of the control gene nirR in Escherichia coli. . Molecular and General Genetics 182:477–479
    [Google Scholar]
  10. Clark D., Cronan J. E. 1980; Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. Journal of Bacteriology 141:177–183
    [Google Scholar]
  11. Clewell D. B. 1972; Nature of ColEl plasmid replication in Escherichia coli in the presence of chloramphenicol. Journal of Bacteriology 110:667–676
    [Google Scholar]
  12. Clewell D. B., Helinski D. R. 1970; Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry 9:4428–4440
    [Google Scholar]
  13. Cole S. T. 1982; Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. . European Journal of Biochemistry 122:479–484
    [Google Scholar]
  14. Cole S. T., Guest J. R. 1979a; Amplification and aerobic synthesis of fumarate reductase in ampicil- lin-resistant mutants of Escherichia coli K12. FEMS Microbiology Letters 5:65–67
    [Google Scholar]
  15. Cole S. T., Guest J. R. 1979b; Production of a soluble form of fumarate reductase by multiple gene duplication in Escherichia coli K12. European Journal of Biochemistry 102:65–71
    [Google Scholar]
  16. Cole S. T., Guest J. R. 1980a; Genetic and physical characterisation of X transducing phages ( λfrdA) containing the fumarate reductase gene of Escherichia coli K12. Molecular and General Genetics 178:409–418
    [Google Scholar]
  17. Cole S. T., Guest J. R. 1980b; Amplification of fumarate reductase synthesis with λfrdA transducing phages and orientation offrdA gene expression. Molecular and General Genetics 179:377–385
    [Google Scholar]
  18. Gardner J. F., Lascelles J. 1962; The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. . Journal of General Microbiology 29:157–164
    [Google Scholar]
  19. Glick B. R., Zeisler J., Banaszuk A. M., Friesen J. D., Martin W. G. 1981; The identification and partial characterization of a plasmid containing the gene for the membrane-associated hydrogenase from E. coli. . Gene 15:201–206
    [Google Scholar]
  20. Guest J. R. 1981; Partial replacement of succinate dehydrogenase function by phage- and plasmid- specified fumarate reductase in Escherichia coli. . Journal of General Microbiology 122:171–179
    [Google Scholar]
  21. Guest J. R., Stephens P. E. 1980; Molecular cloning of the pyruvate dehydrogenase complex genes of Escherichia coli. . Journal of General Microbiology 121:277–292
    [Google Scholar]
  22. Haddock B. A., Jones C. W. 1977; Bacterial respiration. Bacteriological Reviews 41:47–99
    [Google Scholar]
  23. Haldenwang W. G., Losick R. 1980; Novel RNA polymerase sigma factor from Bacillus subtilis: 37000 m.w. protein gives transcriptional specificity. Proceedings of the National Academy of Sciences of the United States of America 77:7000–7004
    [Google Scholar]
  24. Jones R. W. 1979; The topography of the membrane- bound hydrogenase of Escherichia coli explored by non-physiological electron acceptors. Biochemical Society Transactions 7:724–725
    [Google Scholar]
  25. Kröger A. 1977; Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. Symposia of the Society for General Microbiology 27:61–93
    [Google Scholar]
  26. Kröger A. 1978; Fumarate as terminal acceptor of phosphorylative electron transport. Biochimica et biophysica acta 505:129–145
    [Google Scholar]
  27. Lambden P. R., Guest J. R. 1976; Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. Journal of General Microbiology 97:145–160
    [Google Scholar]
  28. Lederberg E. M., Cohen S. N. 1974; Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. Journal of Bacteriology 119:1072–1074
    [Google Scholar]
  29. Miller J. H. 1972 Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Murray K., Murray N. E. 1975; Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III of Haemophilus influenzae and restriction endonuclease I of Escherichia coli. . Journal of Molecular Biology 98:557–564
    [Google Scholar]
  31. Murray N. E., Manduca De Ritis P., Foster L. A. 1973; DNA targets for the Escherichia coli K restriction system analysed genetically in recombinants between phages phi80 and lambda. Molecular and General Genetics 120:261–280
    [Google Scholar]
  32. Newman B. M., Cole J. A. 1978; The chromosomal location and pleiotropic effects of mutations of the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and in other anaerobic redox reactions. Journal of General Microbiology 106:1–12
    [Google Scholar]
  33. Sancar A., Hack A. M. 1979; Simple method for identification of plasmid-coded proteins. Journal of Bacteriology 137:692–693
    [Google Scholar]
  34. Shaw D. J., Guest J. R. 1981; Molecular cloning of the fnr gene of Escherichia coli K12. Molecular and General Genetics 181:95–100
    [Google Scholar]
  35. Spencer M. E., Guest J. R. 1973; Isolation and properties of fumarate reductase mutants of Escherichia coli. . Journal of Bacteriology 114:563–570
    [Google Scholar]
  36. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180
    [Google Scholar]
  37. Ward D. F., Murray N. E. 1980; Construction and characterisation of Escherichia coli polA-lacZ gene fusions. Journal of Bacteriology 142:962–972
    [Google Scholar]
  38. Wilson G. G., Murray N. E. 1979; Molecular cloning of the DNA ligase gene from phage T4. I. Characterisation of the recombinants. Journal of Molecular Biology 132:471–491
    [Google Scholar]
  39. Wimpenny J. W. T., Cole J. A. 1967; The regulation of metabolism in facultative bacteria. III. The effect of nitrate. Biochimica et biophysica acta 148:233–242
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-10-2221
Loading
/content/journal/micro/10.1099/00221287-128-10-2221
Loading

Data & Media loading...

Most cited Most Cited RSS feed