1887

Abstract

5-Fluorouracil powerfully inhibits growth of Isolates that are resistant to fluorouracil all have a reduced ability to transport uracil but most also have other defects. Their capacity to take up a wide range of amino acids is greatly reduced, as is their ability to alter rates of amino acid transport during nitrogen starvation. These isolates may be defective in the coupling of energy generation to transport systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-127-1-45
1981-11-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/127/1/mic-127-1-45.html?itemId=/content/journal/micro/10.1099/00221287-127-1-45&mimeType=html&fmt=ahah

References

  1. Burton K. 1977; Transport of adenine, hypoxanthine and uracil into Escherichia coli. Biochemical Journal 168:195–204
    [Google Scholar]
  2. Chevallier M. R., Jund R., Lacroute F. 1975; Characterization of cytosine permeation in Saccharomyces cerevisiae. Journal of Bacteriology 122:629–641
    [Google Scholar]
  3. Cockburn M., Earnshaw P., Eddy A. A. 1975; The stoicheiometry of the absorption of protons with phosphate and l-glutamate by yeast of the genus Saccharomyces. Biochemical Journal 146:705–712
    [Google Scholar]
  4. Eddy A. A., Nowacki J. A. 1971; Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochemical Journal 122:701–711
    [Google Scholar]
  5. Grenson M. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochimica et biophysica acta 127:339–346
    [Google Scholar]
  6. Grenson M., Hennaut C. 1971; Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. Journal of Bacteriology 105:477–482
    [Google Scholar]
  7. Grenson M., Mousset M., Wiame J. M., Bechet J. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochimica et biophysica acta 127:325–338
    [Google Scholar]
  8. Grenson M., Hou C., Crabeel M. 1970; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. Journal of Bacteriology 103:770–777
    [Google Scholar]
  9. Heidelberger C. 1965; Fluorinated pyrimidines. Progress in Nucleic Acid Research and Molecular Biology 4:1–50
    [Google Scholar]
  10. Hochstadt-Ozer J. 1972; The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes. Journal of Biological Chemistry 247:2419–2426
    [Google Scholar]
  11. Jones R. W., Wild D. G. 1973; Regulation of uptake of purines, pyrimidines and amino acids by Candida utilis. Biochemical Journal 134:617–627
    [Google Scholar]
  12. Jund R., Lacroute F. 1970; Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae. Journal of Bacteriology 102:607–615
    [Google Scholar]
  13. Jund R., Chevallier M. R., Lacroute F. 1977; Uracil transport in Saccharomyces cerevisiae. Journal of Membrane Biology 36:233–251
    [Google Scholar]
  14. Losson R., Jund R., Chevallier M. R. 1978; Properties of three distinct pyrimidine transport systems in yeast. Evidence for distinct energy coupling. Biochimica et biophysica acta 513:296–300
    [Google Scholar]
  15. Polak A., Grenson M. 1973; Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans. European Journal of Biochemistry 32:276–282
    [Google Scholar]
  16. Reichert U., Forêt M. 1977; Energy coupling in hypoxanthine transport of yeast. Potentiometric evidence for proton symport and potassium antiport. FEBS Letters 83:325–328
    [Google Scholar]
  17. Roy-Burman S., Visser D. W. 1975; Transport of purines and deoxyadenosine in Escherichia coli. Journal of Biological Chemistry 250:9270–9275
    [Google Scholar]
  18. Surdin Y., Sly W., Sire J., Bordes A. M., De Robichon-Szulmajster H. 1965; Propriétés et contróle génétique du système d’accumulation des acides aminés chez Saccharomyces cerevisiae. Biochimica et biophysica acta 107:546–566
    [Google Scholar]
  19. Whittaker P. A., Hammond R. C., Luha A. A. 1972; Mechanism of mitochondrial mutation in yeast. Nature New Biology; London: 238266–268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-127-1-45
Loading
/content/journal/micro/10.1099/00221287-127-1-45
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error