1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-126-1-5
1981-09-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/126/1/mic-126-1-5.html?itemId=/content/journal/micro/10.1099/00221287-126-1-5&mimeType=html&fmt=ahah

References

  1. Barrett J. T., Kallio R. E. 1953; Terminal respiration in Pseudomonas fluorescens. Component enzymes of the tricarboxylic acid cycle. Journal of Bacteriology 66:517–525
    [Google Scholar]
  2. Beckwith J. R., Zipser D. 1970 The Lactose Operon New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  3. Betz J. L., Clarke P. H. 1972; Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. Journal of General Microbiology 73:161–174
    [Google Scholar]
  4. Brammar W. J., Clarke P. H., Skinner A. J. 1967; Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. Journal of General Microbiology 47:87–102
    [Google Scholar]
  5. Bukhari A. I., Shapiro J. A., Adhya S. L. 1977 DNA Insertion Elements, Plasmids and Episomes New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Campbell J. H., Lengyel J. A., Langridge J. 1973; Evolution of a second gene for β galactosidase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 701841–1845
    [Google Scholar]
  7. Charnetsky W. T., Mortlock R. P. 1974; Close genetic linkage of the determinants of the ribitol and d-arabitol catabolic pathways in Klebsiella aerogenes. Journal of Bacteriology 119:176–182
    [Google Scholar]
  8. Clarke P. H., Meadow P. M. 1959; Evidence for the occurrence of permeases for tricarboxylic cycle intermediates in Pseudomonas aeruginosa. Journal of General Microbiology 20:144–155
    [Google Scholar]
  9. Cornelis G., Ghosal D., Saedler H. 1978; Tn 951: a new transposon carrying a lactose operon. Molecular and General Genetics 160:215–224
    [Google Scholar]
  10. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114:974–979
    [Google Scholar]
  11. Emmer M., De Crombrugghe B., Pastan I., Perlman R. 1970; Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proceedings of the National Academy of Sciences of the United States of America 66480–487
    [Google Scholar]
  12. Epps H. M. R., Gale E. F. 1942; The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochemical Journal 36:619–623
    [Google Scholar]
  13. Farin F., Clarke P. H. 1978; Positive regulation of amidase synthesis. Journal of Bacteriology 135:379–392
    [Google Scholar]
  14. Fildes P., Gladstone G. P., Knight B.C.J.G. 1933; The nitrogen and vitamin requirements of B. typhosus. British Journal of Experimental Pathology 14:189–196
    [Google Scholar]
  15. Fothergill J. C., Guest J. R. 1977; Catabolism of l-lysine by Pseudomonas aeruginosa. Journal of General Microbiology 99:139–155
    [Google Scholar]
  16. Gale E. F. 1943; Factors influencing the enzymic activities of bacteria. Bacteriological Reviews 7:139–173
    [Google Scholar]
  17. Gale E. F. 1971; ‘Don’t talk to me about permeability’. Journal of General Microbiology 68:1–14
    [Google Scholar]
  18. Gilbert W., Muller-Hill B. 1966; Isolation of the Lac repressor. Proceedings of the National Academy of Sciences of the United States of America 561891–1898
    [Google Scholar]
  19. Haas D., Holloway B. W. 1976; R factor with enhanced sex factor activity in Pseudomonas aeruginosa. Molecular and General Genetics 144:243–251
    [Google Scholar]
  20. Hall B. G. 1978; Experimental evolution of a new enzymatic function. II, Evolution of multiple functions for ebg enzyme in E. coli. Genetics 89:453–465
    [Google Scholar]
  21. Hall B. G., Clarke N. D. 1977; Regulation of newly evolved enzymes. Ill, Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics 85:193–201
    [Google Scholar]
  22. Hall B. G., Zuzel T. 1980; Evolution of new enzymatic function by recombination within a gene. Proceedings of the National Academy of Sciences of the United States of America 773529–3533
    [Google Scholar]
  23. Holloway B. W. 1978; Isolation and characteriza-tion of an R‘ plasmid in Pseudomonas aeruginosa. Journal of Bacteriology 133:1078–1082
    [Google Scholar]
  24. Horiuchi T., Novick A. 1961; A thermolabile repression system. Cold Spring Harbor Symposia on Quantitative Biology 26:247–248
    [Google Scholar]
  25. Inderued C. B., Mortlock R. P. 1977; Growth of Klebsiella aerogenes on xylitol: implications for bacterial enzyme evolution. Journal of Molecular Evolution 9:181–190
    [Google Scholar]
  26. Jacob F., Monod J. 1961; Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3:318–356
    [Google Scholar]
  27. Karstrom H. 1930 Über die Enzymbildung in Bakterien Thesis Helsingfors, Finland:
    [Google Scholar]
  28. Knight B.C.J.G. 1937; The nutrition of Staphylococcus aureus: nicotinic acid and vitamin Bl. Biochemical Journal 31:731–787
    [Google Scholar]
  29. Kogut M., Podoski E. P. 1953; Oxidative pathways in a fluorescent Pseudomonas. Biochemical Journal 55:800–811
    [Google Scholar]
  30. Lwoff A., Ullman A. (editors) 1979 Origins of Molecular Biology. A Tribute to Jacques Monod New York: Academic Press;
    [Google Scholar]
  31. Miller J. H., Reznikoff W. S. (editors) 1978 The Operon New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Monod J., Cohn M. 1952; La biosynthese induite des enzymes (Adaptation enzymatique). Advances in Enzymology 13:67–119
    [Google Scholar]
  33. Morishita T., Fukada T., Shirota M., Yura T. 1974; Genetic basis of nutritional requirements in Lactobacillus casei. Journal of Bacteriology 120:1078–1084
    [Google Scholar]
  34. Mortlock R. P., Wood W. A. 1971; Genetic and enzymatic mechanisms for the accommodation to novel substrates by Aerobacter aerogenes. In Biochemical Responses to Environmental Stress pp. 1–14 Edited by Bernstein I. A. London: Plenum Press.;
    [Google Scholar]
  35. Mortlock R. P., Fossitt D. D., Wood W. A. 1965; A basis for utilization of unnatural pentoses and pentitols by Aerobacter aerogenes. Proceedings of the National Academy of Sciences of the United States of America 54572–579
    [Google Scholar]
  36. Neuberger M. S., Hartley B. S. 1981; Structure of an experimentally evolved gene duplication encoding ribitol dehydrogenase in a mutant of Klebsiella aerogenes. Journal of General Microbiology 122:181–191
    [Google Scholar]
  37. Novick A., Horiuchi T. 1961; Hyper-production of β-galactosidase by Escherichia coli bacteria. Cold Spring Harbor Symposia on Quantitative Biology 26:239–245
    [Google Scholar]
  38. Pakes W. C. C., Jollyman W. H. 1901; The bacterial decomposition of formic acid into carbon dioxide and hydrogen. Journal of the Chemical Society 79:386–391
    [Google Scholar]
  39. Paterson A., Clarke P. H. 1979; Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa. Journal of General Microbiology 114:75–85
    [Google Scholar]
  40. Peck H. D., Gest H. 1957; Formic dehydrogenase and the hydrogen-lyase enzyme complex in coli-aerogenes bacteria. Journal of Bacteriology 73:706–721
    [Google Scholar]
  41. Pollock M. 1950; Penicillinase adaptation in B. cereus: adaptive enzyme formation in the absence of free substrate. British Journal of Experimental Pathology 31:739–753
    [Google Scholar]
  42. Potts J. R., Clarke P. H. 1974; The regulation of histidine catabolism in Pseudomonas aeruginosa. Proceedings of the Society for General Microbiology 163
    [Google Scholar]
  43. Rahman M., Clarke P. H. 1980; Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. Journal of General Microbiology 116:357–369
    [Google Scholar]
  44. Reiss G., Holloway B. W., Puhler A. 1980; R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication. Genetical Research 36:99–109
    [Google Scholar]
  45. Rheinwald J. G., Chakrabarty A. M., Gunsalus I. C. 1973; A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proceedings of the National Academy of Sciences of the United States of America 70885–887
    [Google Scholar]
  46. Rigby P. W. J., Burleigh B. D., Hartley B. S. 1974; Gene duplication in experimental enzyme evolution. Nature: London: 251:200–204
    [Google Scholar]
  47. Shapiro J. A. 1969; Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. Journal of Molecular Biology 40:93–105
    [Google Scholar]
  48. Stanier R. Y. 1947; Simultaneous adaptation: a new technique for the study of metabolic pathways. Journal of Bacteriology 54:339–357
    [Google Scholar]
  49. Stanier R. Y. 1951; Enzymatic adaptation in bacteria. Annual Review of Microbiology 5:35–56
    [Google Scholar]
  50. Stephenson M., Stickland L. H. 1932; Hydrogenlyases. Bacterial enzymes liberating molecular hydrogen. Biochemical Journal 26:712–724
    [Google Scholar]
  51. Stephenson M., Stickland L. H. 1933; Hydrogenlyases. Further experiments on the formation of formic hydrogenlyase by Bact. coli. Biochemical Journal 27:1528–1532
    [Google Scholar]
  52. Stickland L. H. 1929; The bacterial decomposition of formic acid. Biochemical Journal 23:1187–1198
    [Google Scholar]
  53. Swim H. E., Krampitz L. O. 1954; Acetic acid oxidation by Escherichia coli: evidence for the occurrence of a tricarboxylic acid cycle. Journal of Bacteriology 67:419–425
    [Google Scholar]
  54. Turberville C., Clarke P. H. 1981; A mutant of Pseudomonas aeruginosa PAC with an altered amidase inducible by the novel substrate. FEMS Microbiology Letters 10:87–90
    [Google Scholar]
  55. Watanabe T., Fukasawa T. 1961; Episome mediated transfer of drug resistance in Entero- bacteriaceae. 1. Transfer of resistance factors by conjugation. Journal of Bacteriology 81:667–678
    [Google Scholar]
  56. Willetts N. S., Crowther C., Holloway B. W. 1981; IS21 and chromosome mobilization by R68.45. Society for General Microbiology Quarterly 8:88
    [Google Scholar]
  57. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2. Evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–423
    [Google Scholar]
  58. Wolf J., Stickland L. H., Gordon J. 1954; Enzymes concerned with gas formation by some coliform bacteria. Journal of General Microbiology 11:17–26
    [Google Scholar]
  59. Woods D. D. 1936; Hydrogenlyases IV. The synthesis of formic acid by bacteria. Biochemical Journal 30:515–527
    [Google Scholar]
  60. Wu T. T., Lin E. C. C., Tanaka S. 1968; Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon source. Journal of Bacteriology 96:447–456
    [Google Scholar]
  61. Zubay G., Schwartz D., Beckwith J. 1970; Mechanism of activation of catabolite-sensitive genes: a positive control system. Proceedings of the National Academy of Sciences of the United States of America 66104–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-126-1-5
Loading
/content/journal/micro/10.1099/00221287-126-1-5
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error