1887

Abstract

(Hildenborough), (Essex 6) and (holotype) are shown to grow on H and sulphate as sole energy source. Lithotrophic growth on H and sulphate is thus not a unique property of a few newly isolated strains as previously reported ( Badziong ., 1978 ).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-126-1-249
1981-09-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/126/1/mic-126-1-249.html?itemId=/content/journal/micro/10.1099/00221287-126-1-249&mimeType=html&fmt=ahah

References

  1. Badziong W., Thauer R. K. 1978; Growth yields and growth rates of Desulfovibrio vulgaris(Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Archives of Microbiology 117:209–214
    [Google Scholar]
  2. Badziong W., Thauer R. K., Zeikus J. G. 1978; Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Archives of Microbiology 116:41–49
    [Google Scholar]
  3. Badziong W., Ditter B., Thauer R. K. 1979; Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg) growing on hydrogen and sulfate as sole energy source. Archives of Microbiology 123:301–305
    [Google Scholar]
  4. Brandis A. 1981 Spezies Charakterisierung von Methanobacterium thermoautotrophicum (Marburg) und Desulfovibrio vulgaris (Marburg). Ph. D. Thesis; University of Marburg, F.R.G.:
    [Google Scholar]
  5. Gillis M., DeLey J., DeCleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. European Journal of Biochemistry 12:143–153
    [Google Scholar]
  6. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  7. Mechalas B. J., Rittenberg S. C. 1960; Energy coupling in Desulfovibrio desulfuricans. Journal of Bacteriology 80:501–507
    [Google Scholar]
  8. Pfennig N., Widdel F. 1981; Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In Biology of Inorganic Nitrogen and Sulfur pp. 169–177 Bothe H., Trebst A. Edited by Berlin: Springer.;
    [Google Scholar]
  9. Postgate J. R. 1960; On the autotrophy of Desulphovibrio desulphuricans. Zeitschrift für allge-meine Mikrobiologie 1:53–56
    [Google Scholar]
  10. Postgate J. R. 1979 The Sulphate-reducing Bacteria. Cambridge: Cambridge University Press.;
    [Google Scholar]
  11. Sorokin Yu. I. 1966a; Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria. Microbiology (English translation ofMikro- biologiya) 35:643–647
    [Google Scholar]
  12. Sorokin YU. I. 1966b; Investigation of the structural metabolism of sulfate-reducing bacteria with 14C. Microbiology (English translation of Mikrobiologiya) 35:806–814
    [Google Scholar]
  13. Sorokin Yu. I. 1966c; Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria. Nature: London: 210:551–552
    [Google Scholar]
  14. Thauer R. K., Badziong W. 1981; Dissimilatory sulfate reduction, energetic aspects. In Biology of Inorganic Nitrogen and Sulfur pp. 188–198 Bothe H., Trebst A. Edited by Berlin: Springer.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-126-1-249
Loading
/content/journal/micro/10.1099/00221287-126-1-249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error