Sporulation of and in Continuous Submerged Liquid Culture Free

Abstract

Sporulation of and was induced in a continuous tower fermenter by restricting growth by nutrient limitation. Shock carbon limitation produced no sporulation, but the gradual decrease of sucrose or starch supply to produced slight sporulation. Gradual nitrate limitation produced no sporulation, while a shock decrease in nitrate concentration caused heavy sporulation of both organisms. The previously unobserved morphology of the sporulating structures produced was much simplified under nitrate limitation, but similar to sub-aerial morphology under carbon limitation. Maintenance energy values for sucrose and starch were calculated for and for starch for . The continuous tower fermenter system was found to be ideal for controlling organism morphology and thus sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-126-1-193
1981-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/126/1/mic-126-1-193.html?itemId=/content/journal/micro/10.1099/00221287-126-1-193&mimeType=html&fmt=ahah

References

  1. Anderson J. G., Smith J. E. 1971a; Synchronous initiation and maturation of Aspergillus niger conidiophores in submerged culture. Transactions of the British Mycological Society 56:9–29
    [Google Scholar]
  2. Anderson J. G., Smith J. E. 1971b; The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger(microcycle). Journal of General Microbiology 69:185–197
    [Google Scholar]
  3. Bainbridge B. W., Bull A. T., Pirt S. J., Rowley B. I., Trinci A. P. J. 1971; Biochemical and structural changes in non-growing, maintained and autolysis cultures of Aspergillus nidulans. Transactions of the British Mycological Society 56:371–385
    [Google Scholar]
  4. Carter B. L. A., Bull A. T. 1969; Studies of fungal growth and intermediate carbon metabolism under steady and non-steady state conditions. Biotechnology and Bioengineering 11:785–804
    [Google Scholar]
  5. Carter B. L. A., Bull A. T., Pirt S. J., Rowley B. I. 1971; Relationship between energy substrate utilization and specific growth rate in Aspergillus nidulans. Journal of Bacteriology 108:309–313
    [Google Scholar]
  6. Chapman B., Cooke G. H., Whitehead R. 1967; Automated analysis: the determination of ammoniacal, nitrous and nitric nitrogen in river waters, sewage effluents and trade effluents. Journal of the Institute of Water Pollution Control2
    [Google Scholar]
  7. Cochrane V. W. 1958 Physiology of the Fungi. London & New York: Wiley.;
    [Google Scholar]
  8. Cocker R. 1980; Interactions between fermenter and micro-organism: tower fermenter. In Fungal Biotechnology pp. 111–124 Smith J. E., Berry D. R., Kristiansen B. Edited by London & New York: Academic Press.;
    [Google Scholar]
  9. Cocker R., Greenshields R. N. 1975; Design for laboratory scale tower fermenters. Laboratory Practice 24:341–343
    [Google Scholar]
  10. Dawes I. W., Thornley J. H. M. 1970; Sporulation of Bacillus subtilis. Theoretical and experimental studies in continuous culture systems. Journal of General Microbiology 62:49–66
    [Google Scholar]
  11. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  12. Dulaney E. L., Stapley E. O., Lavac C. H. 1955; Hydroxylation of steroids, principally pro-gesterone, by a strain of Aspergillus ochraceus. Mycologia 47:464–474
    [Google Scholar]
  13. Galbraith J. C., Smith J. E. 1969a; Sporulation of Aspergillus niger in submerged liquid culture. Journal of General Microbiology 59:31–45
    [Google Scholar]
  14. Galbraith J. C., Smith J. E. 1969b; Filamentous growth of Aspergillus niger in submerged shake culture. Transactions of the British Mycological Society 52:237–246
    [Google Scholar]
  15. Greenshields R. N., Pannell S. D. 1975 U.K. Patent Application No. 53702/74
    [Google Scholar]
  16. Greenshields R. N., Smith E. L. 1971; Tower fermentation systems and their applications. Chemical Engineer 249:182–190
    [Google Scholar]
  17. Greenshields R. N., Smith E. L. 1974; The tubulvar reactor in fermentation. Process Biochemistry 9:11–18
    [Google Scholar]
  18. Hadley G., Harrold C. E. 1958; The sporulation of Penicillium notatum Westling in submerged liquid culture. 1. The effect of calcium and nutrients on sporulation intensity. Journal of Experimental Botany 9:408–447
    [Google Scholar]
  19. Haines W. J., Collingworth D. R. 1953 U.S. Patent No. 2649401
    [Google Scholar]
  20. Hsu E. J., Ordal Z. J. 1969; Sporulation of Clostridium thermosaccharolyticum under conditions of restricted growth. Journal of Bacteriology 97:1511–1512
    [Google Scholar]
  21. Markham R. 1942; A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochemical Journal 36:790
    [Google Scholar]
  22. Morton A. G. 1961; The induction of sporulation in mould fungi. Proceedings of the Royal Society B153:548–569
    [Google Scholar]
  23. Morton A. G., Dickerson A. G. F., England D. J. F. 1960; Changes in enzyme activity of fungi during nitrogen starvation. Journal of Experimental Botany 11:116
    [Google Scholar]
  24. Ng A. M. L., Smith J. E., Anderson J. G. 1972; Changes in carbon catabolic pathways during the synchronous development of Aspergillus niger. Journal of General Microbiology 71:495–504
    [Google Scholar]
  25. Ng A. M. L., Smith J. E., McIntosh A. F. 1973; Conidiation of Aspergillus niger in continuous culture. Archiv für Mikrobiologie 88:119–126
    [Google Scholar]
  26. Pannell S. D. 1976 Studies in continuous tower fermentation. Ph.D. thesis University of Aston in Birmingham:
    [Google Scholar]
  27. Righelato R. C., Trinci A. P. J., Pirt S. J., Peat A. 1968; The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation of Penicillium chrysogenum. Journal of General Microbiology 50:399–412
    [Google Scholar]
  28. Schleg M. C., Knight S. G. 1962; Hydroxylation of progesterone by conidia from Aspergillus ochraceus. Mycologia 54:317–319
    [Google Scholar]
  29. Schulze K. L., Lipe R. S. 1964; Relationship between substrate concentration, growth rate and respiration rate of Escherichia coli, in continuous culture. Archiv für Mikrobiologie 48:1–20
    [Google Scholar]
  30. Sehgal S. N., Singh K., Vezina C. 1968; 11α hydroxylation of steroids by spores of Aspergillus ochraceus. Canadian Journal of Microbiology 14:529–530
    [Google Scholar]
  31. Sekiguchi J., Gaucher G. M., Costerton J. W. 1975; Microcycle conidiation in Penicillium urticae. (iii) An ultrastructural investigation of conidiogenesis. Canadian Journal of Microbiology 21:2069–2083
    [Google Scholar]
  32. Smith E. L., Greenshields R. N. 1974; Tower fermentation systems and their application to aerobic processes. Chemical Engineer 281:28–34
    [Google Scholar]
  33. Smith J. E., Deans S. G., Anderson J. G., Davis B. 1977; The nature of fungal sporulation. In Biotechnology and Fungal Differentiation pp. 17–41 Meyrath J., Bu’Lock J. D. Edited by London: Academic Press;
    [Google Scholar]
  34. Spensley R. 1977 The utilization of low-grade carbohydrates. Ph.D. thesis University of Aston in Birmingham:
    [Google Scholar]
  35. Stockbridge P. J. 1979 The treatment of a food process waste material. Ph.D. thesis University of Aston in Birmingham:
    [Google Scholar]
  36. Vezina C., Singh K., Sehgal S. N. 1965; Sporulation of filamentous fungi in submerged culture. Mycologia 57:722–736
    [Google Scholar]
  37. Weiss B., Turian G. 1966; A study of conidiation in Neurospora crassa. Journal of General Microbiology 44:407–418
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-126-1-193
Loading
/content/journal/micro/10.1099/00221287-126-1-193
Loading

Data & Media loading...

Most cited Most Cited RSS feed