1887

Abstract

Cyanobacteria consume H by two different pathways: the oxyhydrogen reaction and anaerobic, light-dependent H utilization. The two pathways are shown here to be induced differently by incubating cyanobacteria anaerobically under H.Inthe unicellular and in N and NH -grown and ,such treatment greatly enhances the activity of the oxyhydrogen reaction in all cell types. In contrast, the light-dependent pathway, determined by the H-dependent photoreduction of NADP, is demonstrable with higher activity only in heterocysts.

Whereas the activity of the oxyhydrogen reaction isdirectly correlated to the structural integrity of membranes, there is an inverse correlation between membrane integrity and H formation catalysed by hydrogenase. These findings, together withphysiological considerations, suggest that a ‘reversible’ soluble hydrogenase does not exist in photoautotrophic cyanobacteria. No definite conclusions about the existence of two membrane-bound uptake hydrogenases are possible at present.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-125-2-383
1981-08-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/125/2/mic-125-2-383.html?itemId=/content/journal/micro/10.1099/00221287-125-2-383&mimeType=html&fmt=ahah

References

  1. Benemann J. R., Weare N. M. 1974; Nitrogen fixation by Anabaena cylindrica. III. Hydrogen supported nitrogenase activity. Archives of Microbiology 101:401–408
    [Google Scholar]
  2. Bothe H., Eisbrenner G. 1978; Aspects of hydrogen metabolism in blue-green algae. In Hydrogenases, their Catalytic Activity, Structure and Function pp. 353–369 Schlegel H. G., Schneider K. Edited by Göttingen: Verlag Erich Goltze.;
    [Google Scholar]
  3. Bothe H., Eisbrenner G. 1981; The hydrogenase-nitrogenase relationship in nitrogen fixing organisms. In Biological Nitrogen and Sulfur Metabolism pp. 141–150 Bothe H., Trebst A. Edited by Berlin: Springer.;
    [Google Scholar]
  4. Bothe H., Tennigkeit J., Eisbrenner G. 1977a; The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Archives of Microbiology 114:43–49
    [Google Scholar]
  5. Bothe H., Tennigkeit J., Eisbrenner G., Yates M. G. 1977b; The hydrogenase-nitrogenase relationship in the blue-green alga Anabaena cylindrica. Planta 133:237–242
    [Google Scholar]
  6. Bothe H., Distler E., Eisbrenner G. 1978; Hydrogen metabolism in blue-green algae. Biochimie 60:277–289
    [Google Scholar]
  7. Daday A., Lambert G. R., Smith G. D. 1979; Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria. Biochemical Journal 177:139–144
    [Google Scholar]
  8. Eisbrenner G., Bothe H. 1979; Modes of electron transfer from molecular hydrogen in Anabaena cylindrica. Archives of Microbiology 123:37–45
    [Google Scholar]
  9. Eisbrenner G., Distler E., Floener L., Bothe H. 1978; The occurrence of the hydrogenase in cyanobacteria. Archives of Microbiology 118:177–184
    [Google Scholar]
  10. Hallenbeck P. C., Benemann J. R. 1978; Characterization and partial purification of the reversible hydrogenase of Anabaena cylindrica. FEBS Letters 94:261–264
    [Google Scholar]
  11. Hallenbeck P. C., Benemann J. R. 1979; Hydrogen from algae. In Topics in Photosynthesis 3 pp. 333–364 Barber J. Edited by Amsterdam: Elsevier/North Holland Biomedical Press.;
    [Google Scholar]
  12. Hallenbeck P. C., Kochian L. V., Benemann J. R. 1981; Hydrogen evolution catalysed by hydrogenase in cultures of cyanobacteria. Zeitschrift für Naturforschung 36c:87–92
    [Google Scholar]
  13. Klingenberg M. 1970; Nicotinamid-adenin-dinucleotide (NAD, NADP, NADH, NADPH).Spektrophotometrische und fluorimetrische Verfahren. In Methoden der Enzymatischen Analyse, 2nd edn. 2 pp. 1975–2004 Bergmeyer H. U. Edited by Weinheim: Verlag Chemie.;
    [Google Scholar]
  14. Lockau W. 1981; Evidence for a dual role of cytochrome c-553 and plastocyanin in photo-synthesis and respiration of the cyanobacterium Anabaena variabilis. Archives of Microbiology 128:336–340
    [Google Scholar]
  15. Peschek G. A. 1979a; Anaerobic hydrogenase activity in Anacystis nidulans: H2-dependent photoreduction and related reactions. Biochimica et biophysica acta 548:187–202
    [Google Scholar]
  16. Peschek G. A. 1979b; Aerobic hydrogenase activity in Anacystis nidulans: the oxyhydrogen reaction. Biochimica et biophysica acta 548:203–215
    [Google Scholar]
  17. Peschek G. A. 1980; Restoration of respiratory electron transport reactions in quinone-depleted particle preparations from Anacystis nidulans. Biochemical Journal 186:515–523
    [Google Scholar]
  18. Peterson R. B., Burris R. H. 1978; Hydrogen metabolism in isolated heterocysts of Anabaena 7120. Archives of Microbiology 116:125–132
    [Google Scholar]
  19. Peterson R. B., Wolk C. P. 1978; Localization of an uptake hydrogenase in Anabaena. Plant Physiology 61:688–691
    [Google Scholar]
  20. Sim E., Vignais P. M. 1979; Comparison of the membrane-bound and detergent-solubilized hydrogenase from Paracoccus denitrificans. Biochimica et biophysica acta 570:43–55
    [Google Scholar]
  21. Tel-Or E., Luijk L. W., Packer L. 1978; Hydrogenase in N2-fixing cyanobacteria. Archives of Biochemistry and Biophysics 185:185–194
    [Google Scholar]
  22. Tetley R. M., Bishop N. I. 1979; The differential action of metronidazole on nitrogen fixation, hydrogen metabolism, photosynthesis and respiration in Anabaena and Scenedesmus. Biochimica et biophysica acta 546:43–53
    [Google Scholar]
/content/journal/micro/10.1099/00221287-125-2-383
Loading
/content/journal/micro/10.1099/00221287-125-2-383
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error