1887

Abstract

Bacteria assigned to the genus have not yet been isolated in pure culture, but have been implicated in the deposition of ferric iron. These organisms have been observed in a number of lakes but the conditions under which active growth occurred have not been defined. A population of sp. developed in the anoxic hypolimnion of Esthwaite Water, a eutrophic lake in the English Lake District. Direct counts and experimental evidence obtained with this population suggested that the organism was capable of anaerobic growth. Inhibition of growth by chloramphenicol provided further evidence of its prokaryotic organization. The population overwintered in the sediment and at the onset of summer stratification, with deoxygenation of the hypolimnion, migrated into the water column. There was insufficient evidence to implicate sp. in ferric iron deposition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-125-1-85
1981-07-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/125/1/mic-125-1-85.html?itemId=/content/journal/micro/10.1099/00221287-125-1-85&mimeType=html&fmt=ahah

References

  1. Beger H. 1949; Beiträge zur Systematik und geographischen Verbreitung der Eisenbakterien. Berichte der Deutschen botanischen Gesellschaft 62:7–13
    [Google Scholar]
  2. Cullimore D. R., Mccann A. E. 1977; The identification, cultivation and control of iron bacteria in ground water. In Aquatic Microbiology pp. 219–261 Skinner F. A., Shewan J. M. Edited by London: Academic Press.;
    [Google Scholar]
  3. Cunningham C. R., Davison W. 1980; An opto-electronic sediment detector and its use in the chemical micro-profiling of lakes. Freshwater Biology 10:413–418
    [Google Scholar]
  4. Davison W., Heaney S. I., Talling J. F., Rigg E. 1981; Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweizerische Zeitschrift für Hydrologie 42:196–224
    [Google Scholar]
  5. Dondero N. C. 1975; The Sphaerotilus-Leptothrix group. Annual Review of Microbiology 29:407–428
    [Google Scholar]
  6. Dorff P. 1934; Die Eisenorganismen. Pflanzenforschung 16:1–62
    [Google Scholar]
  7. Drabkova V. G. 1971; Iron bacteria in some lakes of the Karelian isthmus. Hydrobiological Journal 7:21–27
    [Google Scholar]
  8. Dubinina G. A. 1976; Ecology of freshwater iron bacteria. Biological Bulletin 3:473–489
    [Google Scholar]
  9. Dubinina G. A. 1978; Mechanism of oxidation of divalent iron and manganese by iron bacteria growing in neutral medium. Mikrobiologiya 47:591–599
    [Google Scholar]
  10. Dubinina G. A., Kuznetsov S. I. 1976; The ecological and morphological characteristics of microorganisms in LesnayaLamba (Karelia). Internationale Revue der gesamten Hydrobiologie 61:1–19
    [Google Scholar]
  11. Dubinina G. A., Zhdanov A. V. 1975; Recognition of the iron bacteria “Siderocapsa” as Arthrobacters and description of Arthrobacter siderocapsulatus sp.nov. International Journal of Systematic Bacteriology 25:340–350
    [Google Scholar]
  12. Frolund A. 1977; The seasonal variation of the neuston of a small pond. Botanisk Tidsskrift 72:45–56
    [Google Scholar]
  13. Ghiorse W. C., Hirsch P. 1977; Iron and manganese deposition by budding bacteria. In Proceedings of the 3rd International Symposium of Environmental Biogeochemistry and Geomicrobiology 3 pp. 897–909 Krumbein W. E. Edited by Ann Arbor: Ann Arbor Science.;
    [Google Scholar]
  14. Ghiorse W. C., Hirsch P. 1979; An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Archives of Microbiology 123:213–226
    [Google Scholar]
  15. Glathe H., Ottow J. C. G. 1972; Ecological and physiological aspects of the mechanism of iron oxidation and ochreous deposit formation-a review. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung II) 127:749–769
    [Google Scholar]
  16. Gregory E., Perry R. S., Staley J. T. 1980; Characterization, distribution and significance of Metallogenium in Lake Washington. Microbial Ecology 6:125–140
    [Google Scholar]
  17. Hagström A., Larsson U., Horstedt P., Normark S. 1979; Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied and Environmental Microbiology 37:805–812
    [Google Scholar]
  18. Hirsch P. 1968; Biology of budding bacteria: IV. Epicellular deposition of iron by aquatic budding bacteria. Archiv für Mikrobiologie 60:201–216
    [Google Scholar]
  19. Jones J. G. 1975; Some observations on the occurrence of the iron bacterium Leptothrix ochracea in fresh water, including reference to large experimental enclosures. Journal of Applied Bacteriology 39:63–72
    [Google Scholar]
  20. Jones J. G. 1978; The distribution of some freshwater planktonic bacteria in two stratified eutrophic lakes. Freshwater Biology 8:127–140
    [Google Scholar]
  21. Jones J. G., Simon B. M. 1977; Increased sensitivity in the measurement of ATP in freshwater samples with a comment on the adverse effect of membrane filtration. Freshwater Biology 1:253–260
    [Google Scholar]
  22. Jones J. G., Simon B. M. 1980; Decomposition processes in the profundal region of Blelham Tarn and the Lund tubes. Journal of Ecology 68:493–512
    [Google Scholar]
  23. Kucera S., Wolfe R. S. 1957; A selective enrichment method for Gallionella ferruginea. Journal of Bacteriology 74:344–349
    [Google Scholar]
  24. Kullman K. H., Schweisfurth R. 1978; Iron oxidising, rod-shaped bacteria. II. Quantitative study of metabolism and iron oxidation using iron(II) oxalate. Zeitschrift für allgemeine Mikrobiologie 18:321–327
    [Google Scholar]
  25. Mackereth F. J. H. 1964; An improved galvanic cell for determination of oxygen concentrations in fluids. Journal of Scientific Instruments 41:38–41
    [Google Scholar]
  26. Mackereth F. J. H., Heron J., Talling J. F. 1978; Some revised methods of water analysis for limnologists. Freshwater Biological Association Scientific Publication36
    [Google Scholar]
  27. Mortimer C. H. 1941; The exchange of dissolved substances between mud and water in lakes. I and II. Journal of Ecology 29:280–329
    [Google Scholar]
  28. Mortimer C. H. 1942; The exchange of dissolved substances between mud and water in lakes.III and IV. Journal of Ecology 30:147–201
    [Google Scholar]
  29. Revsbech N. P., Jørgensen B. B., Blackburn T. H. 1980; Oxygen in the sea bottom measured with a microelectrode. Science 207:1355–1356
    [Google Scholar]
  30. Sauberer F. 1958; Zur Durchsichtigkeitsmessung im Gewässern. Wetter und Leben 10:67–69
    [Google Scholar]
  31. Skuja H. 1956; Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova acta Regiae Societatis scientiarum upsaliensis Ser. 4 16:1–404
    [Google Scholar]
  32. Svorcova L. 1975; Iron bacteria of the genus Siderocapsa in mineral waters. Zeitschrift für allgemeine Mikrobiologie 15:553–557
    [Google Scholar]
  33. Svorcova L. 1979; Iron bacteria of the family Siderocapsaceae. Archiv für Hydrobiologie 87:423–452
    [Google Scholar]
  34. Zavarzin G. A. 1974; Family Siderocapsaceae. In Bergey’s Manual of Determinative Bacteriology, 8th edn. pp. 464–468 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-125-1-85
Loading
/content/journal/micro/10.1099/00221287-125-1-85
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error