1887

Abstract

SUMMARY: A strain of with a mutation in the gene was shown to lack acetaldehyde dehydrogenase and alcohol dehydrogenase. The requirement of this strain for an external oxidant to grow anaerobically on glucose shows that the reduction of acetyl-CoA is the principal means of reoxidation of NADH produced during glycolysis in Further mutants derived from the strain were shown to be affected in the enzymes involved in the fermentation of pyruvate (pyruvate formate-lyase, phosphotransacetylase, acetate kinase). A gene controlling acetate kinase () activity has been located at 39 min on the chromosomal map. Evidence is presented that anaerobic nitrite reduction with pyruvate involves at least the dehydrogenase subunit of the pyruvate dehydrogenase complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-124-1-35
1981-05-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/124/1/mic-124-1-35.html?itemId=/content/journal/micro/10.1099/00221287-124-1-35&mimeType=html&fmt=ahah

References

  1. Abou-Jaoudé A. 1979 Etude de la réduction du nitrite chez Escherichia coli K12. Thèse de Doctorat d’Etat Université d’Aix-Marseille II, France:
    [Google Scholar]
  2. Abou-Jaoudé A., Pascal M.C., Casse F., Chippaux M. 1978; Isolation and phenotypes of mutants from Escherichia coli K12 defective in nitrite reductase activity. FEMS Microbiology Letters 3:235–239
    [Google Scholar]
  3. Abou-Jaoudé A., Chippaux M., Pascal M.C. 1979; Formate-nitrite reduction in Escherichia coli Kl2. Physiological study of the system. European Journal of Biochemistry 95:309–314
    [Google Scholar]
  4. Bergmeyer H.U. 1974 editor Methoden der Enzymatischen Analyse, 3rd edn.. Weinheim: Verlag Chemie;
    [Google Scholar]
  5. Blaschkowski H.P., Knappe J., Wieland TH. 1979; S-Ethyl-Coenzyme A and acetonyl-dethio- Coenzyme A. Interactions with pyruvate carboxylase and phosphotransacetylase. FEBS Letters 98:81–84
    [Google Scholar]
  6. Brown T.D.K., Jones-Mortimer M.C., Kornberg H.L. 1977; The enzymic inter-conversion of acetate and acetyl-coenzyme A in Escherichia coli. Journal of Générai Microbiology 102:327–336
    [Google Scholar]
  7. Casse F., Pascal M.C., Chippaux M., Ratouchniak J. 1976; Genetic analysis of mutants from Escherichia coli unable to grow anaerobically without exogenous acceptor. Molecular and General Genetics 148:338–340
    [Google Scholar]
  8. Chippaux M., Casse F., Pascal M.C., Gray C.T. 1974; Nitrate and nitrite as electron acceptors in a glycolysis negative mutant of Escherichia coli. Proceedings of the American Society for Microbiology p. 86:
    [Google Scholar]
  9. Clark D., Cronan J.E. 1980; Mutants of Escherichia coli with altered control of alcohol dehydrogenase and nitrate reductase. Journal of Bacteriology 141:177–183
    [Google Scholar]
  10. Davis B.D., Mingioli E.S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  11. Frey P.A., Ikeda B.H., Gavino G.R., Speckhard D.C., Wong S.S. 1978; Escherichia coli pyruvate dehydrogenase complex. Site coupling in electron and acetyl group transfer pathways. Journal of Biological Chemistry 253:7234–7241
    [Google Scholar]
  12. Guest J.R. 1979; Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoro- acetate-resistant mutants. Journal of General Microbiology 115:259–271
    [Google Scholar]
  13. Guest J.R., Creaghan I.T. 1973; Gene-protein relationships of the β-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and characterization of lipoamide dehydrogenase mutants. Journal of General Microbiology 75:197–210
    [Google Scholar]
  14. Hansen R.G., Henning U. 1966; Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochimica et biophysica acta 122:355–358
    [Google Scholar]
  15. Huang M., Pittard J. 1967; Genetic analysis of mutant strains of Escherichia coli requiring p- aminobenzoic acid for growth. Journal of Bacterio-logy 93:1938–1942
    [Google Scholar]
  16. Kelmers A.D., Hancher C.W., Phares E.F., Novelli G.D. 1971; Large-scale fermentation of Escherichia coli and recovery of transfer ribonucleic acids. Methods in Enzymology 20:3–9
    [Google Scholar]
  17. Knappe J. 1978; Pyruvate formate-lyase: mechanism and regulation by interconversion. Hoppe-Sevler’s Zeitschrift für physiologische Chemie 359:286
    [Google Scholar]
  18. Knappe J., Blaschkowski H.P., Edenharder R. 1972; Enzyme-dependent activation of pyruvate formate-lyase of Escherichia coli. In Metabolic Interconversion of Enzymes pp. 319–329 Wieland O., Helmreich E., Holzer H. Edited by Berlin, Heidelberg & New York: Springer-Verlag;
    [Google Scholar]
  19. Knappe J., Blaschkowski H.P., Grobner P., Schmitt T. 1974; Pyruvate formate-lyase of Escherichia coli: the acetyl enzyme intermediate. European Journal of Biochemistry 50:253–263
    [Google Scholar]
  20. Kröger A., Schimkat M., Niedermaier S. 1974; Electron transport phosphorylation coupled to formate reduction in anaerobic grown Proteus rettgeri. Biochimica et biophysica acta 347:273–289
    [Google Scholar]
  21. Lennox E.S. 1955; Transduction of linked genetic characters of the host by bacteriophage PI. Virology 1: 190–206
    [Google Scholar]
  22. Meyhack B., Pfleiderer G., Menningmann H.D. 1973; Iodoacetic acid resistant alcohol dehydrogenase of an Escherichia coli mutant. European Journal of Biochemistry 33:19–29
    [Google Scholar]
  23. Morgan M.J., Kornberg H.L. 1969; Regulation of sugar accumulation by Escherichia coli. FEBS Letters 3:53–55
    [Google Scholar]
  24. Overath P., Pauli G., Schairer H.U. 1969; Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old mutations and the isolation of regulatory mutants. European Journal of Biochemistry 7:559–574
    [Google Scholar]
  25. Rose J.A. 1955; Acetate kinase of bacteria (acetokinase). Methods in Enzymology 1:591–595
    [Google Scholar]
  26. Rudolph F.B., Purich D.L., Fromm H.J. 1968; Coenzyme A-iinked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties and kinetic studies of the enzyme. Journal of Biological Chemistry 243:5539–5545
    [Google Scholar]
  27. Sanwal B.D. 1970; Allosteric controls of amphibolic pathways in bacteria. Bacteriological Reviews 34:20–39
    [Google Scholar]
  28. Schmitt B. 1975; Aldehyde dehydrogenase activity of a complex particle from Escherichia coli. Bio chimie 57:1001–1004
    [Google Scholar]
  29. Stadtman E.R., Burton R.M. 1955; Aldehyde dehydrogenase from Clostridium kluyveri. Methods in Enzymology 1:518–519
    [Google Scholar]
  30. Tarmy E.M., Kaplan N.O. 1968; CHEMICAL characterization of d-lactate dehydrogenase from Escherichia coli B. Journal of Biochemical Chemistry 243:2579–2586
    [Google Scholar]
  31. Taylor A.L., Thoman M.S. 1964; The genetic map of E. coli K12. Genetics 50:659–677
    [Google Scholar]
  32. Varenne S., Casse F., Chippaux M., Pascal M.C. 1975; A mutant of Escherichia coli deficient in pyruvate formate lyase. Molecular and General Genetics 141:181–184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-124-1-35
Loading
/content/journal/micro/10.1099/00221287-124-1-35
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error