1887

Abstract

Studies on the metabolism of tryptophan in ATCC 15926 revealed different metabolic routes for the -and -isomer besides the biosynthetic pathway for pyrrolnitrin synthesis. -Tryptophan catabolism follows the aromatic route via anthranilic acid. Tryptophan 2,3-dioxygenase was induced by -tryptophan. Kynureninase and anthranilate 1,2-dioxygenase were induced by -tryptophan, -kynurenine and anthranilic acid. Anthranilate 1,2-dioxygenase was absent from a mutant strain of ATCC 15926 which produced about 30-fold increased amounts of pyrrolnitrin. The values of tryptophan 2,3-dioxygenase and kynureninase did not differ substantially between the two strains. Kynurenine 3-monooxygenase, 3-hydroxyanthranilate 3,4-dioxygenase, tryptophanase and indolyl-3-alkane α-hydroxylase activities were not detected. - and -tryptophan were converted to indole-3-pyruvate by tryptophan amino-transferase and via indole-3-acetaldehyde to indole-3-acetic acid. This additional catabolic pathway as well as tryptophan racemase activity was constitutive and present in both strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-121-2-465
1980-12-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/121/2/mic-121-2-465.html?itemId=/content/journal/micro/10.1099/00221287-121-2-465&mimeType=html&fmt=ahah

References

  1. Arima K., Imanaka H., Kousaka M., Fukuda A., Tamura G. 1974; Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas . Agricultural and Biological Chemistry 28:575–576
    [Google Scholar]
  2. Behrman E. J. 1962; Tryptophan metabolism in Pseudomonas . Nature; London: 196150–152
    [Google Scholar]
  3. Blumenstock E., Salcher O., Lingens F. 1980; Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926. Journal of General Microbiology 117:81–87
    [Google Scholar]
  4. Elander R. P., Mabe J. A., Hamill R. H., Gorman M. 1968; Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Applied Microbiology 16:753–758
    [Google Scholar]
  5. Floss H. G., Manni P. E., Hamill R. L., Mabe J. A. 1971; Further studies on the biosynthesis of pyrrolnitrin from tryptophan by Pseudomonas. Biochemical and Biophysical Research Communications 45:781–787
    [Google Scholar]
  6. Fujioka M., Morino Y., Wada H. 1970; Metabolism of phenylalanine (Achromobacter euridice). I. Phenylalanine aminotransferase. II. Phenylpyruvate decarboxylase. III. Phenyl- acetaldehyde dehydrogenase. Methods in Enzym-ology 17A:586–596
    [Google Scholar]
  7. Gaertner F. H., Shetty A. S. 1977; Kynureninase-type enzymes and the evolution of the aerobic tryptophan to nicotinamide adenine dinucleotide pathway. Biochimica et biophysica acta 482:453–460
    [Google Scholar]
  8. Ishimura Y. 1970; l-Tryptophan 2,3-dioxygenase (tryptophan pyrrolase) (Pseudomonas fluorescens) . Methods in Enzymology 17A:429–433
    [Google Scholar]
  9. Knox W. E. 1955; Tryptophan oxidation. C. Liver and bacterial kynureninases. Methods in Enzymology 2:249–253
    [Google Scholar]
  10. Kobayashi S., Hayaishi O. 1970; Anthranilic acid conversion to catechol (Pseudomonas) . Methods in Enzymology 17A:505–510
    [Google Scholar]
  11. Kuo T. T., Kosuge T. 1969; Factors influencing the production and further metabolism of indole-3-acetic acid by Pseudomonas savastanoi . Journal of General and Applied Microbiology 15:51–63
    [Google Scholar]
  12. Layne E. 1957; Spectrophotometric and turbido- metric methods for measuring proteins. Methods in Enzymology 3:447–454
    [Google Scholar]
  13. Lingens F., Vollprecht P. 1964; Zur Bio-synthese der Nicotinsäure in Streptomyceten, Algen, Phycomyceten und Hefe. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 339:64–74
    [Google Scholar]
  14. Lingens F., Vollprecht P., Gildemeister V. 1966; Zur Biosynthese der Nicotinsäure in Xanthomonas- und Pseudomonas- Arten,Mycobacterium phlei und Rotalgen. Biochemische Zeitschrift 344:462–477
    [Google Scholar]
  15. Lively D., Gorman M., Haney M., Mabe J. 1966; Metabolism of tryptophans by Pseudomonas aureofaciens. Biosynthesis of pyrrolnitrin. Antimicrobial Agents and Chemotherapy462–469
    [Google Scholar]
  16. Morino Y., Snell E. E. 1970; Tryptophanase (Escherichia coli B). Methods in Enzymology 17A:439–446
    [Google Scholar]
  17. Narumiya S., Takai K., Tokuyama T., Noda Y., Ushiro H., Hayaishi O. 1979; A new metabolic pathway of tryptophan initiated by tryptophan side chain oxidase. Journal of Biological Chemistry 254:7007–7015
    [Google Scholar]
  18. Nizhizuka Y., Ichiyama A., Hayaishi O. 1970; Metabolism of the benzene ring of tryptophan (mammals). I. 3-Hydroxyanthranilic acid oxygenase (beef liver). Methods in Enzymology 17A:467–471
    [Google Scholar]
  19. Okamoto H. 1970; Kynurenine 3-monooxygenase (hydroxylase) (rat liver). Methods in Enzymology 17A:460–463
    [Google Scholar]
  20. Palleroni N. J., Stanier R. Y. 1964; Regulatory mechanisms governing synthesis of the enzymes for tryptophan oxidation by Pseudomonas fluorescens . Journal of General Microbiology 35:319–334
    [Google Scholar]
  21. Roberts J., Rosenfeld H. J. 1977; Isolation, crystallization, and properties of indolyl-3-alkane α-hydroxylase. Journal of Biological Chemistry 252:2640–2647
    [Google Scholar]
  22. Salcher O., Lingens F. 1978; Biosynthese von Pyrrolnitrin. Nachweis von 3-Chloranthranilsaure und 7-Chlorindolessigsaure im Kulturmedium von Pseudomonas aureofaciens . Tetrahedron Letters 34:3101–3102
    [Google Scholar]
  23. Salcher O., Lingens F. 1980; Isolation and characterization of a mutant from Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin. Journal of General Microbiology 118:509–513
    [Google Scholar]
  24. Salcher O., Lingens F., Fischer P. 1978; Biosynthese von Pyrrolnitrin. Nachweis von 4-(2′-Amino-3′-chlorphenyl)pyrrol-2-carbonsäure. Tetrahedron Letters 34:3097–3100
    [Google Scholar]
  25. Salcher O., Van Pée K.-H., Lingens F. 1980; Isolierung von 7-Chlorindol-3-acetamid aus Pseudomonas aureofaciens ATCC 15926. Zeitschrift för Naturforschung 35c:340–341
    [Google Scholar]
  26. Schneider E. A., Wightman F. 1974; Metabolism of auxin in higher plants. Annual Review of Plant Physiology 25:487–513
    [Google Scholar]
  27. Shetty A. S., Gaertner F. H. 1978; Kynureninase-type enzymes from two strains of Xanthomonas pruni . FEMS Microbiology Letters 3:259–263
    [Google Scholar]
  28. Snell E. E. 1957; Microbiological determination of amino acids. Methods in Enzymology 3:477–492
    [Google Scholar]
  29. Soda K., Osumi T. 1971; Amino acid racemase (Pseudomonas striata) . Methods in Enzymology 17B:629–630
    [Google Scholar]
  30. Wellner D. 1971; l-Amino acid oxidase (snake venom). Methods in Enzymology 17B:597–600
    [Google Scholar]
  31. Yagi K. 1971; d-Amino acid oxidase and its complexes (hog kidney). Methods in Enzymology 17B:608–622
    [Google Scholar]
  32. Yamamoto S., Hayaishi O. 1970; Tryptophan 2,3-dioxygenase (tryptophan pyrrolase) (rabbit intestine). Methods in Enzymology 17A:434–438
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-121-2-465
Loading
/content/journal/micro/10.1099/00221287-121-2-465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error